Lecture 15: Drawing General
Graphs I

COSC 225: Algorithms and Visualization
Spring, 2023

Announcements

lask

1. Assignment 07 posted, due Friday _ %\0(
2. Assignment 08 posted soon, due next Friday CX \
3. Final Projects ('1557

e work with partner e
e topic: open-ended

e requirement: build an interactive site with a
significant algorithmic component

4. Limited OH This Week (advising week)
e Short OH today
e No OH on Thursday -~

\’?.CSVD'(QQ) Q X—Ccn.vq Q° L

Quiz 03, Question o e
Applymatrlxq;_r\(\1 1 ‘5 2] — Qi\c\\\l\ aV\N,

\MQ—H(\ 0.) —\-(ow\SQoicMS

A

AN

/
/

/

/

Lravslake (5, 2) fohole (ys A«Q
N Cole @)

Outline

1. Drawing General Graphs
2. Circular Layouts

e Mikinen

e AVSDF

Last Time: Drawing Trees I
Greedy Layout

Last Time: Drawing Trees II
Knuth Layout

Last Time: Drawing Trees III
Tidy Layout

Today

Drawing general graphs

/L-\(\Vuu(" 5&‘\' 0-‘ Vel "’l @S
4 (&Crﬁs \()e:\w.uJI\ \Jex Hus
Dulpur’ Posdians - o VK

(ow \‘O O(od Qéﬁ&s
o)

Warmup Activity

Draw a graph with the following adjacency lists

6,
8,
6,
S5,
4,
1,
35,
2,

0O < o U & W N B
O 0O W N W N O b
~ ~ ~ ~ ~ ~ ~ ~
N 2 00 N b Wwod

Random Layout

What Does Graph Look Like?

More Generally

What might we want in a graph layout? ,
— WO C.\chss'(./\y Qc&cke_s :2 ?033(bl !

Desiderata
From Fruchterman and Reingold (1991):

Distribute the vertices evenly in the frame.
Minimize edge crossings.

Make edge lengths uniform.

Reflect inherent symmetry.&—

Conform to the frame.

Cvis O N —

Interesting Question

Which graphs can be drawn without any edge crossings?

e such graphs are called planar graphs

N

3
I\
AN

Minimal Non-planar Graphs

Characterization of Planar Graphs
A Ca(o\p\'\ Con be &iow W oud

Q<&<1€ c,(033<'m7,5 \3} ond om(y F
L does wof ankain @ s:v\b&vcs(w

OX— kr o(K(S/S

AN

Algorithmic Results

There are efhicient algorithms for

1. detecting if a graph is planar
2. drawing a planar graph without edge crossings, e.g.:

e Auslander-Parter 1961
e Lempel-Even-Cederbaum 1967

Implementing one would make an awesome final project!

Minimizing Edge Crossings
What about non-planar graphs? (Most graphs are not
planar!)

Question. Can we efliciently draw graphs so as to
minimize the number of edge crossings?

Minimizing Edge Crossings
What about non-planar graphs? (Most graphs are not
planar!)

Question. Can we efliciently draw graphs so as to
minimize the number of edge crossings?

Answer. No!

e there is no known efficient algorithm for this task

Minimizing Edge Crossings
What about non-planar graphs? (Most graphs are not
planar!)

Question. Can we efficiently draw graphs so as to 0 ALY w
minimize the number of edge crossings?

Answer. No! y oW

e there is no known efficient algorithm for this task

More precisely. The following problem is|NP-complete l

e Input: A graph G and a natural number k

o Output: * yes "if G can be drawn with at most k crossings,
and “no” otherwise

General Graph Drawing

Focus on heuristics

e do not guarantee that output minimized edge crossings,
etc

e nonetheless have reasonably good results for the graphs
we care about

o typically “simple” procedures

Two (of many) Approaches

1. Circular Layouts (today)
e fix vertices lie on a circle

e pick an ordering of vertices to illustrate some graph
eatures

2. Physical simulation layouts (Wednesday)
e force-directed graphs
» adjacent vertices attract each other (somewhat)
» non-adjacent vertices repel each other

e simulate physical system to determine vertex
placement

Circular Layouts

Progression I: Random

Progression II: Circular

e oan o= @S

ﬂ(&.au&{
ey

S\ANL\\LS"
Dec{(U
st

Starting Point

Framework from graph/DFS demos

e Graph object stores lists of vertices/edges
e Vertex object stores adjacency list (neighbors), has x, y
e Edge object represents a pair of vertices

e GraphVisualizer moderates interactions between site
and Graph instance

= draws vertices/edges
= responds to user interactions

Adding Interactions

Previously:

e click to add vertices
e click pair of vertices to add edge

Added:

e hover to highlight a vertex and its neighbors
e demo: lecl5-graph-drawing.zip

Implementing Hover Interactions

Added event listener to each vertex element

elt.addEventListener("mouseover", (e) => {
7 .muteAll(); (._—-
.unmuteVertex(vtx); E~—
.highlightVertex(vtx); &—
(nbr vtx.neighbors) {
.highlightVertex(nbr); —
.highlightEdge(.graph.getEdge(vtx, nbr));

Ao

elt.addEventListener("mouseout"”, (e) => {

S——

.unmuteAll ();
.unhighlightAll();

SVCQ Q,\UMJ.M.(' (LP(?S‘MHWOI \IL\‘-L\(V+><

Circular Embeddings

Setup: Graph with n vertices. How to set locations on a

circle? , ;
o _ (odiuns =€

- QOO(&\‘/\OL) 0@ cc,v\(,q Qcﬁ,cﬂ
a () C'.‘-U—r)

do wlowl 4i;
ASUAY 4—(«\:(%(%(7\4

Circular Embedding in Code

.setLayoutCircle = cy,

. C——— [
vertices = .graph.vertices;
n = vertices.length;

(i=0; i< n; i++) {

4
vertices[i].Xx r * Math. cos(* i /@ + CXx;

vertices[i].y r * Math.sin(2 * Math.PI * i / n) + cy;

H}

Simplified Problem

Now that we can draw vertices evenly around a circle, we
can focus on the order in which to add vertices

e which ordering minimizes edge crossings?
= no easier than general problem! &—

e which ordering is most informative?

e which ordering looks nice?

Makinen Heuristic

Basic idea:

e split vertices into left and right sets
e vertices with more left neighbors placed on left side
» sim for right side

Makinen Procedure

1. Find two vertices of highest degree and add them to
left/right sets

2. Repeat until all vertices are added to left or right:

e compute (right neighbors) - (left neighbors) for
each vertex ~ >

e add vertex with largest value to right
e add vertex with smallest value to left
3. Add left vertices on left side, right on right side

Makinen Example

How To Implement Makinen
Efficiently
e What do we keep track of and store?

e How do we update data structures?
 How efhicient is the procedure

Makinen Procedure, Again

1. Find two vertices of highest degree and add them to
left/right sets

2. Repeat until all vertices are added to left or right:

e compute (right neighbors) - (left neighbors) for
each vertex

e add vertex with largest value to right
e add vertex with smallest value to left
3. Add left vertices on left side, right on right side

Data Structures

vertices = .graph.vertices;

n = vertices.length; \ & P\OKLS
leftPlaced = []; f——" O\ AN \{
rightPlaced = []; &r_—”

placed = Array(n).£fill(e éf’

leftCount = Array(n).£i11(0); ti:l

rightCount = Array(n).£111(0);
placedCount = 2; &

Initialization

vertices.sort((u, v) => {
u.degree() - v.degree();

})i

left vertices[n-1];
leftPlaced.push(left); f—
placed[left.id] = i

right = vertices[n-2];
rightPlaced.push(right);é&"‘
placed[right.id] = A

Main Loop I

{ leftCount[vtx.id]++; }
M
{ rightCount[vtx.id]++; }

(vtx vertices) {
(!placed[vtx.id]) {

left = vtx; '\[Z_(\:\&ZS

right = vtx;

; o Ray ow aaflaed
b YR A A

Main Loop II

(vtx vertices) {

(

right = vtx;
}

(
left = vtx;

+}

What is Overall Running Time?

Assume graph has n vertices, m

See Demo

AVSDF Heuristic

Adjacent Vertex Smallest Degree First
e He & Sykora
Idea:

e perform depth-first search, starting from vertex of
minimal degree

e always explore minimum degree neighbor first

AVSDF Example

How To Implement AVSDF Efficiently

e What do we keep track of and store?
e How do we update data structures?
 How efhcient is the procedure

AVSDF Initialization

order = [];
stack = [];

vertices = .graph.vertices;

n = vertices.length;

placed = Array(n).£fill(

vertices.sort((u, v) => {

u.degree() - v.degree();

}):

stack.push(vertices[0]);

Main Loop

(stack.length > 0) {

vtx = stack.pop();

(!placed[vtx.id]) {
order.push(vtx);
placed[vtx.id] = ;
vtx.neighbors.sort((u, v) => {

v.degree() - u.degree();

})i

(nbr vtx.neighbors) {
(!placed[nbr.id]) { stack.push(nbr); }

Running Time of Main Loop?

When Will Algorithm Fail?

AVSDF Demo

Next Time

Force-directed layout

