
Lecture 15: Drawing General
Graphs I

COSC 225: Algorithms and Visualization

Spring, 2023

Announcements
1. Assignment 07 posted, due Friday
2. Assignment 08 posted soon, due next Friday
3. Final Projects

work with partner
topic: open-ended
requirement: build an interactive site with a
signi!cant algorithmic component

4. Limited OH This Week (advising week)
Short OH today
No OH on Thursday

last
lar

- requ
assyt

-

-

-

Quiz 03, Question 1
Apply matrix(1, 1, -1, 1, 5, 2)

Vector 20,17 transforms
-
L

* t origin
trans.

&
vector (1,0) transforms

·
↓

translate (5,2) rotate(45 deg
Scale (V)

Outline
1. Drawing General Graphs
2. Circular Layouts

Mäkinen
AVSDF

Last Time: Drawing Trees I
Greedy Layout

Last Time: Drawing Trees II
Knuth Layout

Last Time: Drawing Trees III
Tidy Layout
-

Today
Drawing general graphs

Input:set of vertices

edges between vertices

Output:positions for vertices
Chow todraw edges
tool

Warmup Activity
Draw a graph with the following adjacency lists

1: 6, 4, 7
2: 8, 5, 3
3: 6, 2, 4
4: 5, 3, 1
5: 4, 2, 7
6: 1, 3, 8
7: 5, 8, 1
8: 2, 6, 7

Random Layout

What Does Graph Look Like?

0 ⑧-

↳ /
- O

!!

More Generally
What might we want in a graph layout?

- no crossing edges if possible?
- even lengths ofedges

~ vertices spread out

-ordering
of vertices
<categories)

- hierarchy

Desiderata
From Fruchterman and Reingold (1991):

1. Distribute the vertices evenly in the frame.
2. Minimize edge crossings.
3. Make edge lengths uniform.
4. Re"ect inherent symmetry.
5. Conform to the frame.

↳

Interesting Question
Which graphs can be drawn without any edge crossings?

such graphs are called planar graphs

! !
X T

Minimal Non-planar Graphs
⑥

Oi I
k, R3,3

Characterization of Planar Graphs
A graph can be drawn w/out

edge crossings ifand only if

itdoes not contain a sesion
of K5 or K3,3

·
Kuratowski 1930

Algorithmic Results
There are e#cient algorithms for

1. detecting if a graph is planar
2. drawing a planar graph without edge crossings, e.g.:

Auslander-Parter 1961
Lempel-Even-Cederbaum 1967
…

Implementing one would make an awesome !nal project!

Minimizing Edge Crossings
What about non-planar graphs? (Most graphs are not
planar!)

Question. Can we e#ciently draw graphs so as to
minimize the number of edge crossings?
-

Minimizing Edge Crossings
What about non-planar graphs? (Most graphs are not
planar!)

Question. Can we e#ciently draw graphs so as to
minimize the number of edge crossings?

Answer. No!

there is no known e#cient algorithm for this task

Minimizing Edge Crossings
What about non-planar graphs? (Most graphs are not
planar!)

Question. Can we e#ciently draw graphs so as to
minimize the number of edge crossings?

Answer. No!

there is no known e#cient algorithm for this task

More precisely. The following problem is NP-complete

Input: A graph and a natural number

Output: “yes” if can be drawn with at most crossings,
and “no” otherwise

G k
G k

nectedthe
solved e

↓
E

General Graph Drawing
Focus on heuristics

do not guarantee that output minimized edge crossings,
etc
nonetheless have reasonably good results for the graphs
we care about
typically “simple” procedures

-

-

Two (of many) Approaches
1. Circular Layouts (today)

!x vertices lie on a circle
pick an ordering of vertices to illustrate some graph
features

2. Physical simulation layouts (Wednesday)
force-directed graphs

adjacent vertices attract each other (somewhat)
non-adjacent vertices repel each other

simulate physical system to determine vertex
placement

Circular Layouts

Progression I: Random

Progression II: Circular

Progression III: AVSDF Adjacent
- Vertex

smallest

Dequee
First

⑧ O

I-
-

Starting Point
Framework from graph/DFS demos

Graph object stores lists of vertices/edges
Vertex object stores adjacency list (neighbors), has x, y
Edge object represents a pair of vertices
GraphVisualizer moderates interactions between site
and Graph instance

draws vertices/edges
responds to user interactions

-

-
-

Adding Interactions
Previously:

click to add vertices
click pair of vertices to add edge

Added:

hover to highlight a vertex and its neighbors
demo: lec15-graph-drawing.zip
-

Implementing Hover Interactions
Added event listener to each vertex element

elt.addEventListener("mouseover", (e) => {
 this.muteAll();
 this.unmuteVertex(vtx);
 this.highlightVertex(vtx);
 for (let nbr of vtx.neighbors) {

this.highlightVertex(nbr);
this.highlightEdge(this.graph.getEdge(vtx, nbr));

 }
});

elt.addEventListener("mouseout", (e) => {
 this.unmuteAll();
 this.unhighlightAll();
});

-

c

I e

-

E

Ve elementrepresenting vertex vix

Circular Embeddings
Setup: Graph with vertices. How to set locations on a
circle?

n
- en

-
- radius =r

- coordinates of center (x,cy)

⑧ 8 (x,2y +r)

⑰
do w/out transform?
isa

using

Circular Embedding in Code
this.setLayoutCircle = function (cx, cy, r) {
let vertices = this.graph.vertices;
let n = vertices.length;
for (let i = 0; i < n; i++) {
 vertices[i].x = r * Math.cos(2 * Math.PI * i / n) + cx;
 vertices[i].y = r * Math.sin(2 * Math.PI * i / n) + cy;
}}

--

- 03n

Simpli!ed Problem
Now that we can draw vertices evenly around a circle, we
can focus on the order in which to add vertices

which ordering minimizes edge crossings?
no easier than general problem!

which ordering is most informative?
which ordering looks nice?

-

Mäkinen Heuristic
Basic idea:

split vertices into left and right sets
vertices with more left neighbors placed on left side

sim for right side

⑲

Mäkinen Procedure
1. Find two vertices of highest degree and add them to

left/right sets
2. Repeat until all vertices are added to left or right:

compute (right neighbors) - (left neighbors) for
each vertex
add vertex with largest value to right
add vertex with smallest value to left

3. Add left vertices on le$ side, right on right side

-

Mäkinen Example
1: 2, 6, 3, 5
2: 1, 3, 5, 6
3: 1, 2, 6
4: 2, 5
5: 1, 2, 4
6: 1, 3

--

--
- 1 - 2 = -1

-

--
2 - 1 =1
--

·

How To Implement Mäkinen
E#ciently

What do we keep track of and store?
How do we update data structures?
How e#cient is the procedure

Mäkinen Procedure, Again
1. Find two vertices of highest degree and add them to

left/right sets
2. Repeat until all vertices are added to left or right:

compute (right neighbors) - (left neighbors) for
each vertex
add vertex with largest value to right
add vertex with smallest value to left

3. Add left vertices on le$ side, right on right side

Data Structures
const vertices = this.graph.vertices;
const n = vertices.length;
const leftPlaced = [];
const rightPlaced = [];
const placed = new Array(n).fill(false);
const leftCount = new Array(n).fill(0);
const rightCount = new Array(n).fill(0);
let placedCount = 2;

->
already places
I

t

E
E

Initialization
vertices.sort((u, v) => {
 return u.degree() - v.degree();
});

// two highest degree vertices go on left and right sides
let left = vertices[n-1];
leftPlaced.push(left);
placed[left.id] = true;
let right = vertices[n-2];
rightPlaced.push(right);
placed[right.id] = true;

e

-

E
-

Main Loop I
for (let vtx of left.neighbors) { leftCount[vtx.id]++; }
for (let vtx of right.neighbors) { rightCount[vtx.id]++; }

for (let vtx of vertices) {
 if (!placed[vtx.id]) {
 left = vtx;
 right = vtx;
 break;
 }}

en

--
newly placed
verticesI find an unplaced
vertet

Main Loop II
// set right and left to be the vertices maximizing and
// minimizing (respectively) the quantity rightCount -
// leftCount
for (let vtx of vertices) {
 if (/* most right - left nbrs */) {
 right = vtx;
 }

 if (/* least right - left nbrs */) {
 left = vtx;
 }}

What is Overall Running Time?
Assume graph has vertices, n m

See Demo

AVSDF Heuristic
Adjacent Vertex Smallest Degree First

He & Sykora

Idea:

perform depth-!rst search, starting from vertex of
minimal degree
always explore minimum degree neighbor !rst

AVSDF Example
1: 2, 6, 3, 5
2: 1, 3, 5, 6
3: 1, 2, 6
4: 2, 5
5: 1, 2, 4
6: 1, 3

How To Implement AVSDF E#ciently
What do we keep track of and store?
How do we update data structures?
How e#cient is the procedure

AVSDF Initialization
const order = [];
const stack = [];
const vertices = this.graph.vertices;
const n = vertices.length;
const placed = new Array(n).fill(false);

vertices.sort((u, v) => {
 return u.degree() - v.degree();
});

stack.push(vertices[0]);

Main Loop
while (stack.length > 0) {
 let vtx = stack.pop();
 if (!placed[vtx.id]) {
 order.push(vtx);
 placed[vtx.id] = true;
 vtx.neighbors.sort((u, v) => {
 return v.degree() - u.degree();
 });
 for (let nbr of vtx.neighbors) {
 if (!placed[nbr.id]) { stack.push(nbr); }
 }}}

Running Time of Main Loop?

When Will Algorithm Fail?

AVSDF Demo

Next Time
Force-directed layout

