Lecture 10: Convex Hulls;
Animation

COSC 225: Algorithms and Visualization
Spring, 2023

Annoucements

Assignment 06: Submit Pair Preferecnes Today!

Outline

1. Convex Hulls, Finished
2. 3 Ways to Animate!
e CSS transition property
e setInterval
e window. requestAnimationFrame

[Last Time: Convex Hulls
Input:

e set of points in plane
= (x,y)-coordinates of each point

Output:

e a sequence of points (x1,y;1), (x2,¥2), ..., (Xx, V&) that
define the “boundary” of the set of points

» path around (x1, y1), (x2,2), ... , (Xk, Yk) surrounds all
points in the set in clockwise order

» the bounded region is convex /@\

ZERN
~

Input

°
°
n
0o e h
°
o/
om ®
) .
*J
.lb .f .q
° ® ¢
°
1 °

Convex Hull

°)

Grahm’s Scan Algorithm

1. Pre-process X by sorting by x-coordinate:

2. Consider points one by one to determine if they are on
the upper boundary of CH(X)

3. repeat process from right to left to get lower convex hull

Graham Scan Idea, Illustrated

Graham’s Scan Pseudocode

e X sorted by x-coordinate
e stk a stack, initially storing first two points in X B

For each remaining C in X: A / \Q,

e if stk.size() == 1, stk.push(C)
e otherwise
» A and B are top two elements in stk
ll/ABL_Lnot a right turn and stk.size() >1
o_stk.pop) update A, B
» stk.push(C

L 7

P,/

Claim

When Graham’s Scan completes, stk stores the points
along the upper boundary of the convex hull of X.

Why?

Claim

When Graham’s Scan completes, stk stores the points
along the upper boundary of the convex hull of X.

Why? C NN oA
B A
Must show: \QQ?

1. Sequence of points in stk make only right turns:
2. All points in X are below path formed by points in stk

Popping Moves Boundary Up

- 3 ”~
Ss
L) ’.Lﬂ

Beabe Lorers
Graham’s Scan Efficiency? U(:D(v(’} .

If there are n points, what is the running time of Graham’s
scan’

e assume: stack operations are O(1), “left turn” is O(1)

O‘)$. = c;\c,b\ ?OO\V\J((S Qv\(g/ PMSV\ /\‘)o()P,c(
o WYOok wet ones 560
od = . "

—= fotol § of Shack OF

ﬁ\gg QCAQ"\ C,MQ_QA& (LSU\“S s fl j&ugk
op, so # Rowpmies = # Sk gps

o f = OW)

Fe - O [max (“C/cf)
,CJCJ - OC":*‘}B)

TL we ned o H5ch ougseles
— ©@(h log n)
Pseudocode Again

e X sorted by x-coordinagz

N\ @ € o~
—

e stk a stack, initially storing first two points in X (3&-
For each remaining C in X:]

N
N
o

)

e if stk.size() == 1, stk.push(C)
e otherwise
» A and B are top two elements in stk @Q
. rghile ABC is not a right turn and stk.size() > .ﬂ'\w
o stk.pop(), update A, B (—
» stk.push(C)

1 Olaen) = Ol)
— , T uwwm Sorc
Tiuwwxmc{ > @(m\&(v‘\(gﬁ‘] f we st 35(/{'.

Finishing the Computation
How to find the lower boundary of CH(X)?

Lower Boundary Illustrated

90
) Pe,(Q)N{v\
. . Dlecisely
.’(° -
\ . Sowws— S o

\ Wi X sscld
‘g/t ‘CCW"\ ~Ci<(\/\‘r
o (et

Assignment 06

Make an interactive visualization for Graham’s scan
algorithm

e user can add points in the plane

e program steps through execution and illustrates each
step

e returns convex hull of points
e separate non-interactive method for testing

Complete description coming soon!

Animation

Updated DFS Visualization

1. Now highlights current node.
2. Has an animate button

Demo!

e leclO—-dfs—animated.zip

Highlighted Vertex

GraphVisualizer changes

1. Added new SVG layer: overlayGroup

¢ <g></g> element for “group”

e sits “above” other layers (edges, vertices)
2. Methods:

e addOverlayVertex(vtx)

e moveOverlayVertex(vtxl, vtx2)

e removeOverlayVertex(vtx)

Dfs changes

e create and move overlay vertex for cur vertex

A Simple Goal

Goal 1. Show motion of highlighted vertex

e highlight doesn’t “jump” from one frame to the next

Simple Animation with CSS

For this animation:

e only changes are to two attributes of a circle object
= cX and(cy change
e one-shot animation in response to change

Such things can be animated with CSS!

e have classtoverlay-vertex

CSS Transitions

Demo Animation!

A Less Simple Goal

Goal 2. Animate an entire execution of DFS without
manually stepping through.

e How fast should steps be?

mWoMc«,\oB eJaNy (000w ¢

et Tultted (alhod, 1000, 0, b)
JavaScript Timed Iteration

—setInterval(method} time, argl, ...) method:

e call method with arguxnents argl, ... every time ms,
until eternity

e returns the ID of an Intéyval
e to stop, use clearInterva\(id) method

The method 1s gaied a callbaé’k nðod

DFS Animation

Repeatedly call step() function until algorithm
terminates

I used three methods:

e animate to start the animation.

e animateStep to decide what to do for a single animation
step

= call step() if the algorithm isn’t done
= stop the animation if it is done
e stopAnimation to stop the animation

Starting the Animation

AL WO 0UG QWS
) | AN M i (O

Animating a Step

.animateStep = () { Q,\k’-('\A’ <
(.active.length > O)/{/ D~\C(\KQ%

console.log("taking a step from vertex
+ .cur.id);

.step();

{

.stopAnimation();

Stopping the Animation

.stopAnimation = () {

——clearInterval(.curAnimation);

——jb .curAnimation = ;

console.log("animation completed");

}

Demo Animation

Animation: A Third Way

e lecl@-bouncing-ball.zip

Goal. Animate a bunch of dots that bounce around the
screen!

e simple movement
e indefinite animation
» no fixed start/end position

Bouncing Ball Demo

Bouncing Ball Implementation

window. requestAnimationFrame(callback):

e perform operations one time, then redraw screen
= precise timing is set by system

e to animate motion, must call requestAnimationFrame
for each frame

= this is typically done by having callback recursively
call the function making the request

Dot Animation Example

Each dot executes this code:

.animate () {

.updateLocation S EPE =F VX,
.cx <= 0 || .cx >= WIDTH) {

= oVX;

.cy >= HEIGHT)
VY,

window.requestAnimationFrame(() =>

.animate());

Have a Nice Break!

