
Lecture 07: Objects and
Visualization

COSC 225: Algorithms and Visualization

Spring, 2023

Outline
1. JavaScript Events
2. Activity: Draw Dots
3. Objects in JavaScript
4. Graphs

Last Time: SVG
Scalable Vector Graphics

format for representing graphical objects

<svg width="600" height="400" xmlns="http://www.w3.org/2000/svg">
 <rect width="100%" height="100%" fill="white"
 stroke="black" stroke-width="5"/>
 <rect x="100" y="100" width="100" height="100"
 fill="blue" stroke="none"/>
 <circle cx="400" cy="150" r="100" stroke="black"
 stroke-width="5" fill="pink"/>
 <polygon points="150 300 350 300 450 350 250 375"
 stroke="black" stroke-width="5" fill="green"/>
 <line x1="50" y1="50" x2="100" y2="350"
 stroke="black" stroke-width="5"/>
</svg>

- - -

-

f

IE--
-

Output

Today: Interacting with SVG
So far: using JS to add elements to page

Color Grid
Cellular Automata

Same techniques can be applied to SVG

create elements

let circle = document.createElementNS(ns,
'circle');

set attributes

circle.setAttributeNS(null, "fill", "pink");

add elements

svg.appendChild(circle)

- namespace
-

string-

↓ "Www.w3.o
↓

-

D
- namespace (notneeded

↓ after creation)
-
W
I

I attribute
q value

some sun
element

What about interactions in response
to user?

JavaScript Events
Goal: call a method (or methods) when user interacts with
elements on the page

Examples:

click on an element
mouseover an element
mousemove
typing on keyboard

These are all Events in JS!

Adding Events Listeners
Call a method when an element is clicked:

"click" is the name of the event we are listening
drawDot is the method that will get called when event
occurs

method gets passed an Event object
contains info about the Event

// get the element you want to add the listener to
const box = document.querySelector("#dot-box");

// add the listener
box.addEventListener("click", drawDot);

-

element

↳

-

drawDot (e)
↑Event object

Event Attributes
If e is a (mouse) Event, such as click:

e.clientX = x-coordinate of where the event occured
e.clientY = y-coordinate of where the event occured
e.target = element that “heard” the event

Demo: Click!

Activity
Draw dots on your SVG!

Homework 05
Draw other stu! as well!

basic: just draw lines
extra credit: draw more!

Objects in JavaScript

What are Objects?
Collection of

attributes and associated values
methods

Example dot class

attributes:
cx x position of center
cy y position of center

methods:
updateLocation(cx, cy) moves dot to a new
location

Object Constructors
In JS, object types can be de"ned by de"ning a
constructor

function that creates the object
keyword this de"nes attributes and methods

By convention, constructor names are Capitalized:

function Dot(cx, cy) {
 this.cx = cx;
 this.cy = cy;
 this.circle = document.createElementNS(ns, 'circle');
 this.circle.setAttributeNS(null, 'cx', this.cx);
 this.circle.setAttributeNS(null, 'cy', this.cy);
 this.circle.setAttributeNS(null, 'class', 'dot');
 svg.appendChild(this.circle);
}

*field (instance
- variable)

]

To make individual dots
let someDot = new Dot(100,100);
let anotherDot = new Dot(200,200);

// refer to Dot fields
let x = someDot.cx; // x stores value 100

lete
=

scircle
e. setAtributeNS(mull, "x",100)

Now to make some dots…
dots = []; // an array of dots

function makeDots() {
 for(let i = 0; i < 10; i++) {

let x = Math.floor(600 * Math.random());
let y = Math.floor(400 * Math.random());
dots.push(new Dot(x, y));

 }
}

De"ning Methods
You can include method de"nitions in the constructor as
well!

function Dot(cx, cy) {
 ...
 this.updateLocation = function (cx, cy) {

this.cx = cx;
this.cy = cy;
this.circle.setAttributeNS(null, 'cx', this.cx);
this.circle.setAttributeNS(null, 'cy', this.cy);

 };
}

I
method name

17
--

I

letclot:dots [3];
dot. Update location (100,100)

Now we can move dots around
dots = [];

//...create dots...

function moveDots() {
 for(let i = 0; i < 10; i++) {

let x = Math.floor(600 * Math.random());
let y = Math.floor(400 * Math.random());
dots[i].updateLocation(x, y);

 }

}

Dots Demo

Graphs

Graphs
Mathematical abstraction of networks

set of vertices a.k.a. nodes

set of edges

each edge is a pair of nodes

If , we say and are neighbors

V
E

e ∈ E
(u, v) ∈ E u v

E

-

Example
V = {1, 2, 3, 4, 5}
E = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 5), (4, 5)}[I

e

"
-> ⑤4

&

Representing Graphs
Adjacency list representation

list (e.g., array) of vertices
for each vertex, store a list of its neighbors

Example

V = {1, 2, 3, 4, 5}
E = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 5), (4, 5)}

en

= - - -
-- ---

I · 2 3 2

2: I ↳
-

3: I S

4: I 2 5

5:3 ↳

Graphs as Objects
Question. Suppose we want to write a JavaScript program
to represent and manipulate graphs. What types of objects
might we want to represent?

- Verlex
- neighbors
- ich

- Edlge
-vertices itconnects

- Graph: vertices, edges?

What "elds/ops should Graph have?

- add/remove vertices

- add/remove edge

-find vertex

What "elds/ops should Vertex have?

- change neighbor

Anything else?

Designing JavaScript Graphs
My Goals:

represent and manipulate graphs
visualize graphs

Question
What additional information/functionality should our
Graphs (and related objects) have to support visualization
and user interaction?

Graph Demo

My Design
Graph object that stores vertices, edges, visualizer
Vertex stores id, adjacency list, location, graph
Edge stores endpoints, id
GraphVisualizer stores graph, svg element, text "eld

handles all drawing and user interactions

Design Principles
encapsulation: break functionality into small, logically
independent pieces
di!erent functionality di!erent objects

separate representation from presentation/interaction
⟹

Next Time
Visualizing Graph Algorithms!

simple animations

