Lecture 36: NP, Completed

COSC 311 Algorithms, Fall 2022

Announcements

- 1. Final Exam: Friday, Dec. 16 9:00–12:00
 - same format as midterms
 - ~8 questions
- 2. Final Guide: OH Schedule
 - posted this weekend
- 3. Grading:
 - assignments 2, 3 this weekend
 - assignments 4, 5 next week

Previously

Two Classes of Problems:

P: decision problems solvable in polynomial time

NP: decision problems with a polynomial time verifier

A decision problem A is **NP complete** if

1. $A \in NP$

2. For every $B \in NP$, $B \leq_P A$.

Theorem [Cook, Levin]. Boolean Satisfiability (SAT) is NP complete.

Today

- 1. More NP Complete Problems
- 2. Coping with NP Completeness

Simpler Boolean Formulae

Terminology:

- a **literal** is a variable or its negation: x, \bar{x}
- a clause is an expression of the from
 - 1. $(z_1 \land z_2 \land \dots \land z_k)$ (conjuctive clause) where each z_i is a literal, or
 - 2. $(z_1 \lor z_2 \lor \cdots \lor z_k)$ (disjunctive clause) where each z_i is a literal
- a conjunctive normal form (CNF) expression is an expression of the form $C_1 \wedge C_2 \wedge \cdots \wedge C_\ell$ where each C_i is a disjunctive clause

Observation: a CNF formula evaluates to true $\iff all$ clauses evaluate to true

3-SAT

Definition. A **3-CNF formula** is a Boolean formula in conjunctive normal form such that every clause contains 3 literals.

- Input: a 3-CNF formula φ
- Output: "yes" $\iff \varphi$ is satisfiable

3-SAT is NP-Complete

Theorem (Tseytin 1970). Any Boolean formula φ can be efficiently (in polynomial time) transformed into a 3-CNF formula ψ such that:

- 1. if φ is satisfiable, then so is ψ
- 2. if φ is not satisfiable, then neither is ψ

3-SAT is NP-Complete

Theorem (Tseytin 1970). Any Boolean formula φ can be efficiently (in polynomial time) transformed into a 3-CNF formula ψ such that:

- 1. if φ is satisfiable, then so is ψ
- 2. if φ is not satisfiable, then neither is ψ

Consequences.

- 1. SAT $\leq_P 3$ -SAT
- 2. 3-SAT is NP complete

Showing NP Completeness

In order to show a problem A is NP complete, show:

★1. $A \in NP$

- describe a polynomial time verifier for *A*
- **√**2. $B \leq_P A$ for *any* NP complete problem *B*
 - describe a polynomial time reduction from *B* to *A*

IS is NP Complete

Theorem. IS in NP Complete.

Question. What do we need to show?

Strategy. Reduction from 3-SAT

• show 3-SAT \leq_P IS

Question. How to transform a 3-CNF φ into a graph G such that solving IS on G tells us whether φ is satisfiable?

Note: MaxIS Sk

Construction, Formalized

Input:

- 3-SAT formula $\varphi = C_1 \land C_2 \land \cdots \land C_k$ clause $C_i = (x_i \lor y_i \lor z_i)$ with x_i, y_i, z_i literals (variables or negated variables)

Output:

- graph $G = (V, \not E)$ on $n \neq 3k$ vertices
 - $V = \{x_1, y_1, z_1, x_2, y_2, z_2, \dots, x_k, y_k, z_k\}$ edges:
 - for each *i*, x_i , y_i , z_i form a triangle
 - if $x_i = \neg x_i$, add edge (x_i, x_i) (sim. for other variables)

Claim 1

Suppose φ a 3-SAT formula with k clauses, G corresponding graph. If φ is satisfiable, then G has an independent set of size k. Given: satisfying assign for CP M = Set of vertices labelled M"true" liferals For each triangle, if mult. Vertices are in U, choose 2 Call resulting set M Show: U' is an indep. set of Size k.

Claim 2

Suppose φ a 3-SAT formula with k clauses, G corresponding graph. If G has an independent set of size k, then φ is satisfiable.

Conclusion

The correspondence $\varphi \rightarrow G$ is a polynomial time reduction from 3-SAT to IS.

- \implies 3-SAT \leq_P IS.
- \implies IS is NP complete

Previously. Showed Vertex Cover (VC) satisfies IS \leq_P VC

• \implies VC is NP complete

More Relationships

NP Hard Problems

A problem A is **NP Hard** if $B \leq_P A$ for some NP-complete problem B.

NP Hard Problems

A problem A is **NP Hard** if $B \leq_P A$ for some NP-complete problem B.

Examples.

- 1. MaxIS and MVC
- 2. Traveling Salesperson (TSP)
 - *input*: weighted graph *G*, set *U* of vertices
 - *output:* minimum weight cycle containing all vertices of U
- 3. Subset Sum
 - *input*: numbers w_1, w_2, \ldots, w_n , target *s*
 - *output:* subest of numbers that sum to *s*

Coping with NP Hardness

Fact of Life. Many important practical problems are NP-Hard.

"I can't find an efficient algorithm, but neither can all these famous people."

Question. So what do we do about it?

What if we need to solve an NP hard problem?

• deal with it: exact (exponential time) algorithms

- deal with it: exact (exponential time) algorithms
- heuristics: no running time or correctness *guarantee*
 - local search
 - machine learning

- deal with it: exact (exponential time) algorithms
- heuristics: no running time or correctness *guarantee*
 - local search
 - machine learning
- approximation algorithms: efficient algorithms with guaranteed approximation to optimal

- deal with it: exact (exponential time) algorithms
- heuristics: no running time or correctness guarantee
 - local search
 - machine learning
- approximation algorithms: efficient algorithms with guaranteed approximation to optimal
- parameterized algorithms: classify *instances* that can be solved efficiently

Where to go from Here?

- 1. More algorithms!
 - parallel & distributed algorithms (COSC 273, 373)
 - computational geometry (COSC 225)
 - randomized algorithms
 - streaming and sublinear algorithms
 - approximation algorithms
- 2. More complexity!
 - automata/computability theory (COSC 401)
 - computational complexity
 - cryptography
 - models of computation

Thank You!