
Lecture 36: NP, Completed

COSC 311 Algorithms, Fall 2022

Announcements
1. Final Exam: Friday, Dec. 16 9:00–12:00

same format as midterms
~8 questions

2. Final Guide:
posted this weekend

3. Grading:
assignments 2, 3 this weekend
assignments 4, 5 next week

&> OH schedule

Previously
Two Classes of Problems:

P: decision problems solvable in polynomial time

NP: decision problems with a polynomial time veri!er

A decision problem is NP complete if

1. NP

2. For every NP, .

Theorem [Cook, Levin]. Boolean Satis!ability (SAT) is NP
complete.

A
A ∈

B ∈ B A≤P

I
I
-

-

Today
1. More NP Complete Problems
2. Coping with NP Completeness

Simpler Boolean Formulae
Terminology:

a literal is a variable or its negation:
a clause is an expression of the from
1. (conjuctive clause) where each is

a literal, or
2. (disjunctive clause) where each is

a literal
a conjunctive normal form (CNF) expression is an
expression of the form where each
is a disjunctive clause

Observation: a CNF formula evaluates to true all
clauses evaluate to true

x, x̄

(∧ ∧ ⋯ ∧)z1 z2 zk zi

(∨ ∨ ⋯ ∨)z1 z2 zk zi

∧ ∧ ⋯ ∧C1 C2 Cℓ Ci

⟺

-

-

-

..
--

-
W

-

3-SAT
De!nition. A 3-CNF formula is a Boolean formula in
conjunctive normal form such that every clause contains 3
literals.

Example.

3-SAT:

Input: a 3-CNF formula

Output: “yes” is satis!able

φ(w, x, y, z) = (x ∨ y ∨ z) ∧ (y ∨ ∨ w) ∧ (∨ ∨)z̄ x̄ ȳ w̄

φ
⟺ φ

C 22 23

-=- =
*

3 3
-

3-SAT is NP-Complete
Theorem (Tseytin 1970). Any Boolean formula can be
e"ciently (in polynomial time) transformed into a 3-CNF
formula such that:

1. if is satis!able, then so is

2. if is not satis!able, then neither is

φ

ψ
φ ψ
φ ψ

3-SAT is NP-Complete
Theorem (Tseytin 1970). Any Boolean formula can be
e"ciently (in polynomial time) transformed into a 3-CNF
formula such that:

1. if is satis!able, then so is

2. if is not satis!able, then neither is

φ

ψ
φ ψ
φ ψ

Consequences.

1. SAT 3-SAT
2. 3-SAT is NP complete

≤P &Est

Relationships

*E..............
· BipMatching

Showing NP Completeness
In order to show a problem is NP complete, show:

1.

describe a polynomial time veri!er for

2. for any NP complete problem

describe a polynomial time reduction from to

A
A ∈ NP

A
B A≤P B

B A

#

*
B

IS is NP Complete
Theorem. IS in NP Complete.

Question. What do we need to show?

Input: G, k

yout:
"Yes" () a has

inclep. Set
of size k

Already ISEND, gave verifier

for IS in lest. 34

·
To show: reduction from N-

comp late problem to IS
-

IS is NP Complete
Theorem. IS in NP Complete.

Question. What do we need to show?

Strategy. Reduction from 3-SAT

show 3-SAT IS

Question. How to transform a 3-CNF into a graph
such that solving IS on tells us whether is satis!able?

≤P

φ G
G φ

Example
φ(w, x, y, z) = (x ∨ y ∨ z) ∧ (y ∨ ∨ w) ∧ (∨ ∨)z̄ x̄ ȳ w̄

= #clauses ⑳3
Cl C2 2s

...--

*⑭
..

-.·
Note: MaxIS [k

Construction, Formalized
Input:

3-SAT formula

clause with literals (variables
or negated variables)

Output:

graph on vertices

edges:
for each , form a triangle

if , add edge (sim. for other variables)

φ = ∧ ∧ ⋯ ∧C1 C2 Ck
= (∨ ∨)Ci xi yi zi , ,xi yi zi

G = (V , E) n = 3k
V = { , , , , , , … , , , }x1 y1 z1 x2 y2 z2 xk yk zk

i , ,xi yi zi
= ¬xi xj (,)xi xj

dogfro
-

..

Claim 1
Suppose a 3-SAT formula with clauses,
corresponding graph. If is satis!able, then has an
independent set of size .

φ k G
φ G

k
given: satisfying asset

for c

u = set of vertices labelled wh
1
true" literals

For each triangle, if mulf.

vertices are in U, Choose

call resulting set u

&ow: U' is an inclep. set of

size ke.

Claim 2
Suppose a 3-SAT formula with clauses,
corresponding graph. If has an independent set of size

, then is satis!able.

φ k G
G

k φ

u = inclep set

↳ u,,uz..., we literals

show Set x1,x2, ..., Xn variables
-

iM C St. all U..., Uk
are

"true" then we get satisfining
assignment.

Conclusion
The correspondence is a polynomial time
reduction from 3-SAT to IS.

.

 IS is NP complete

Previously. Showed Vertex Cover (VC) satis!es IS VC

 VC is NP complete

φ → G

⟹ 3-SAT IS≤P
⟹

≤P

⟹

More Relationships

NP-SATD

/
B·

.....
-

vc cNmpeeIS

⑧

..........VP
B BipMatching

NP Hard Problems
A problem is NP Hard if for some NP-complete
problem .

A B A≤P
B

NP Hard Problems
A problem is NP Hard if for some NP-complete
problem .

A B A≤P
B

Examples.

1. MaxIS and MVC
2. Traveling Salesperson (TSP)

input: weighted graph , set of vertices
output: minimum weight cycle containing all vertices
of

3. Subset Sum
input: numbers , target

output: subest of numbers that sum to

G U

U

, , … ,w1 w2 wn s
s

Coping with NP Hardness
Fact of Life. Many important practical problems are NP-
Hard.

Question. So what do we do about it?

Coping Strategies
What if we need to solve an NP hard problem?

Coping Strategies
What if we need to solve an NP hard problem?

deal with it: exact (exponential time) algorithms

Coping Strategies
What if we need to solve an NP hard problem?

deal with it: exact (exponential time) algorithms
heuristics: no running time or correctness guarantee

local search
machine learning

Coping Strategies
What if we need to solve an NP hard problem?

deal with it: exact (exponential time) algorithms
heuristics: no running time or correctness guarantee

local search
machine learning

approximation algorithms: e"cient algorithms with
guaranteed approximation to optimal

Coping Strategies
What if we need to solve an NP hard problem?

deal with it: exact (exponential time) algorithms
heuristics: no running time or correctness guarantee

local search
machine learning

approximation algorithms: e"cient algorithms with
guaranteed approximation to optimal
parameterized algorithms: classify instances that can be
solved e"ciently

Where to go from Here?
1. More algorithms!

parallel & distributed algorithms (COSC 273, 373)
computational geometry (COSC 225)
randomized algorithms
streaming and sublinear algorithms
approximation algorithms

2. More complexity!
automata/computability theory (COSC 401)
computational complexity
cryptography
models of computation

Thank You!

