
Lecture 34: P and NP

COSC 311 Algorithms, Fall 2022

Announcement
Job Candidate Talk TODAY

Sims Osborne, UNC Chapel Hill

4:00 in SCCE A131
Refreshments at 3:30 in SCCE C209

Using Simultaneous Multithreading to
Support Real-Time Scheduling

-.

Homework 6
Posted soon…

…not to be turned in!

solution posted later this week

Last Time
Two Problems:

Minimum Vertex Cover (MVC)
Maximum Indpendent Set (MaxIS)

Polynomial-time reductions between them:

MVC MaxIS

MaxIS MVC

Consequence

MVC can be solved e!ciently MaxIS can be solved
e!ciently

≤P
≤P

⟺

⑧E

Today
1. Decision Problems
2. The Classes P and NP

A Technicality
Objective. Understand relationships between
computational problems.

Technical issue. Desired outputs for di"erent problems
can be vastly di"erent:

matching
independent set
spanning tree
…

Convenience. Focus on decision problems:

output is “yes”/”no”

-

-

-

-

MVC vs VC
Minimum Vertex Cover (MVC)

Input: Graph

Output: A vertex cover of smallest possible size

Vertex Cover (VC)

Input: Graph , number

Output:

“yes” if has a vertex cover of size
“no” otherwise

G
C

G k

G k

-

[
a
=.

-
~ 6

vc(4,3) =yes!

vc(a,2) =yes
Vc(4, 1)

=wO

MaxIS vs IS
Maximum Independent Set (MaxIS)

Input: Graph

Output: an indpendent set of the largest possible size

Independent Set (IS)

Input: Graph , number

Output:

“yes” if has an indpendent set of size
“no” otherwise

G

G k

G k

..

Complexity of Decision Problems
Goal. Classify (decision) problems according to their
relative complexities:

which problems can be solved e!ciently?
which problems cannot be solved e!ciently?
which problems can be reduced to other problems?

Polal+2wcO(N)some a
-
-
-
eg.(2x)

The Class P
De!nition. The class P consists of all decision problems
that can be solved in polynomial time.

P = “polynomial time”

a problem is in P if there is an algorithm that given
any instance of

the algorithm correctly outputs “yes”/”no”
the running time is for some constant , =
size of input

A
X A

O()N c c N

-

e

Which Problems Are In P?
B=21*rmB

EXP
-

Tenap suck i can get valueofL and weight
n elements, bls--bu OCO.B)

-

Not polynomial blo Bexpo in loyBI
size of rep. of B.

Min. Spanning tree. O(Mlogn) - Prim
↑3

Decision variant: is there a

spanning tree of,
weight Ik

*

ext partition problem from H.W.

The Class NP

Verifying Output
Consider IS :

“yes” if has an indpendent set of size

“no” if does not have an indpendent set of size

Question. How could you be convinced that IS =
“yes?”

(G, k)
G k

G k

(G, k)

Asfor the IS of88 ⑧
size k

⑧
->verify by checking

8
8
⑧ it is on IS.

-> O(m) if wedges
in graph

check for edges in IS,
if edge is found "reject"

NP, Informally
NP = “nondeterministic polynomial time”

Informal De!nition. The class NP consists of decision
problems whose solution can be veri!ed in polynomial
time.

Setup

 is a decision problem, an instance (input) of

If is a “yes” instance, there should be some way to
convince me this is the case
If is a “no” instance, there should be no way to
convince me is a “yes” instance

A X A
X

X
X

-

-

...

Is

ano

Veri#er
De!nition. Given a decision problem A, a veri!er for A is
a polynomial time algorithm that takes as
input

an instance of A, and

a certi!cate (size polynomial in size of)

and returns a value “accept” or “reject,” subject to two
conditions:

1. completeness if is a “yes” instance, then there exists a
certi#cate such that returns “accept”

2. soundness if is a “no” instance, then for every
certi#cate , returns “reject”

verify(X, C)

X
C X

X
C verify(X, C)

X
C verify(X, C)

by purported
I.S.

e.g. G, k

A Veri#er for IS
Consider IS :

“yes” if has an indpendent set of size

“no” if does not have an indpendent set of size

What is a veri#er for IS?

what should be the certi#cate?
how do we verify a certi#cate?

(G, k)
G k

G k
set ofUK verf.

↓in a
c

(purported IS]

4for each vertex in C

check if any of his neighbors
are in a

1 if so reject

accept otherwise

NP, Formally
De!nition. The class NP consists of all decision problems
that admit a polynomial time veri#er.

NP, Formally
De!nition. The class NP consists of all decision problems
that admit a polynomial time veri#er.

By previous example, IS is in NP

Conceptually NP can be thought of the class of puzzles

a puzzle may be hard to solve
you can easily verify if you (or someone else) solved the
puzzle

7

P vs NP
Open Question. Is there any problem in NP that is not in
P?

Informal statement. Are there problems that are hard to
solve, but whose solutions are easy to verify?

one of deepest mathematical challenges of our time

-

Activity
Which of the following problems are in NP:

1. BipartiteMatching

2. NoFlow

3. GeneralizedChess

4. BooleanSatis#ability

(G, k)
(G, k)

(n, C)
(φ(, , … ,))x1 x2 xn

Bipartite Matching
Question. Is BipartiteMatching in NP?

Decision:Ce- does G have amatchin
of size k?

Yes: 2: a matching of sized

CV,w,), (V2, We] , ...) (Vcc,Wal
-
-

g
-

Verify:
(1) Check these

are edges in G

C2) check for no repeated oty.

More Generally
If a problem is in P, then is in NP:

P NP

Why?

A A
⊆

Verify:
- ignore

certificate

- solve problem
- return "accept") reject"

depending on it output of

& rip, prob is "yes", "no"

NoFlow
Question. Is NoFlow in NP?

Observation
Even if did not know about the Ford-Fulkerson MaxFlow
algorithm, we could still identify NoFlow is in NP.

How?

GeneralizedChess
Question. Is GeneralizedChess in NP?

Chess Remarks
A feature of chess games:

a game may last exponentially many rounds in the size
of the board
therefore: winning strategy might require exponential
time to describe/verify

Fact. GeneralizedChess requires exponential time to solve
(in).

Consequence. Showing GeneralizedChess is in NP would
imply that P NP.

n

≠

Boolean Satis#ability
Question. Is BooleanSatis#ability in NP?

Next Time
NP Completeness: characterizing the “hardest” problems
in NP

