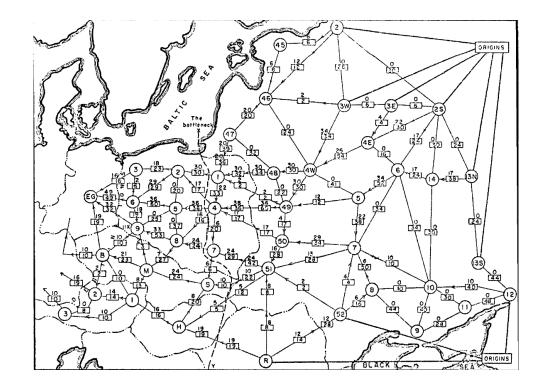
Lecture 30: Network Flow III



COSC 311 Algorithms, Fall 2022

Annoucement

Midterm II on Wednesday

• Practice solutions coming soon

Last Time

Max Flow Problem:

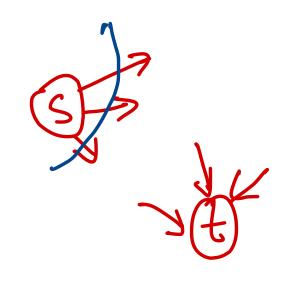
Input.

- weighted directed graph G = (V, E)
 - weights = edge capacities > 0
- source *s*, sink *t*
 - all edges oriented out of s
 - all edges oriented into t

Output.

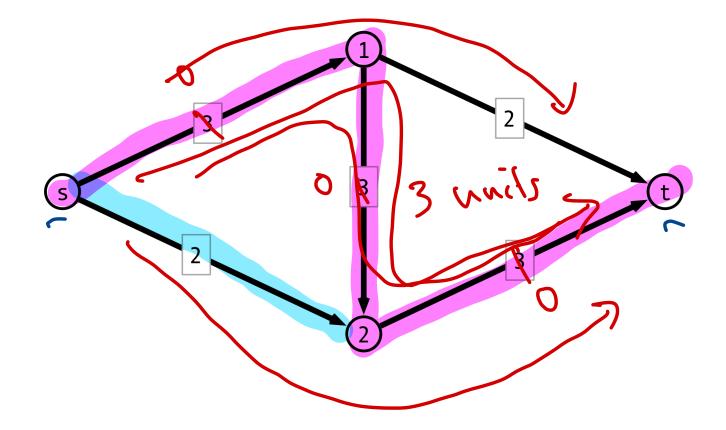
- flow f of maximum value
 - $\operatorname{val}(f) = \sum_{s \to v} f(s, v)$

Val(f) = Sum of flow from S



We Showed

Greedy strategy doesn't always work



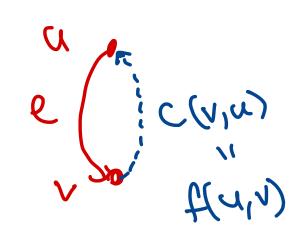
Ford-Fulkerson Idea

Given a flow *f* :

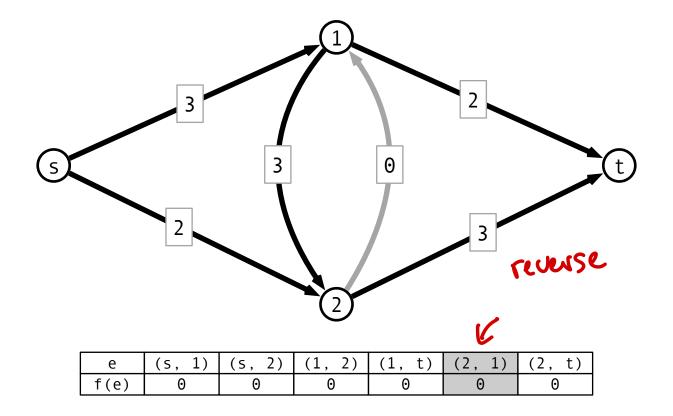
- allow forward flow to be "undone"
- when routing forward flow f(u, v) across edge (u, v), create backwards edge (v, u) with capacity f(u, v)
 - graph with backwards edges = residual graph
- backwards flow cancels out forward flow

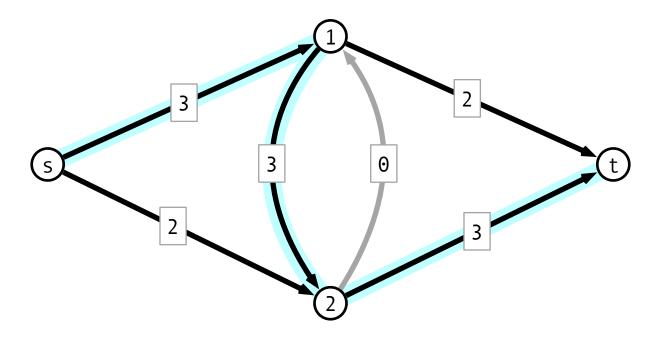
Ford-Fulkerson Algorithm:

- 1. apply greedy strategy to residual graph
- 2. update residual graph with new flow
- 3. continue until no unsaturated path from *s* to *t* remains

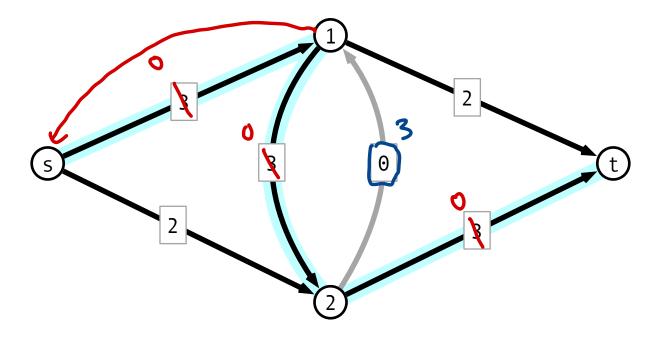


Ford-Fulkerson Example

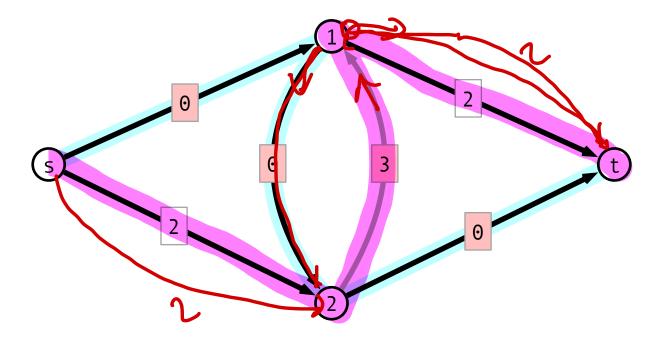




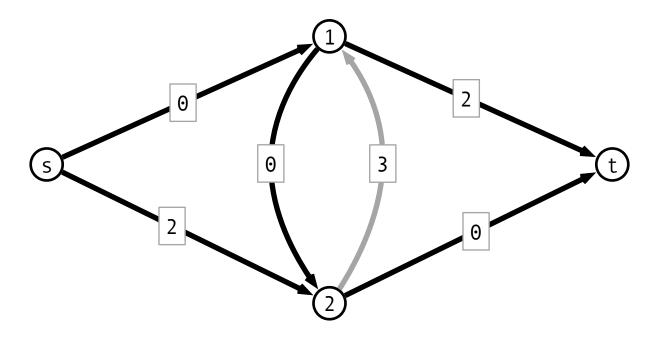
е	(s, 1)	(s, 2)	(1, 2)	(1, t)	(2, 1)	(2, t)
f(e)	0	0	0	0	0	0



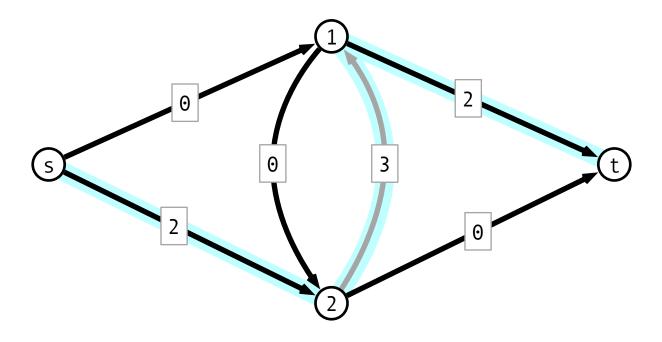
e	(s, 1)	(s, 2)	(1, 2)	(1, t)	(2, 1)	(2, t)
f(e)	3	0	3	0	0	3



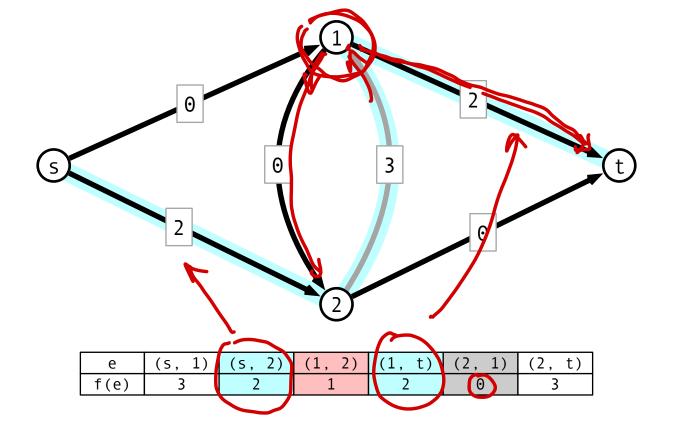
e	(s, 1)	(s, 2)	(1, 2)	(1, t)	(2, 1)	(2, t)
f(e)	3	0	3	0	0	3

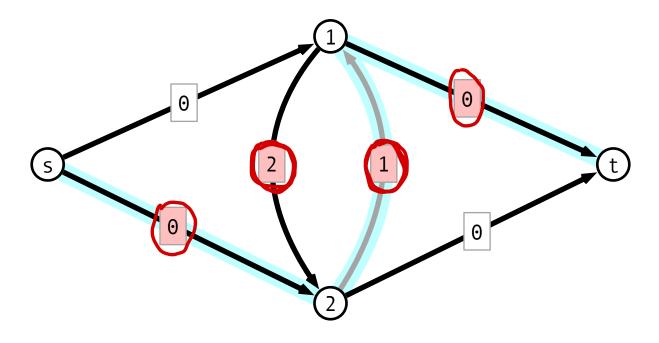


е	(s, 1)	(s, 2)	(1, 2)	(1, t)	(2, 1)	(2, t)
f(e)	3	0	3	0	0	3

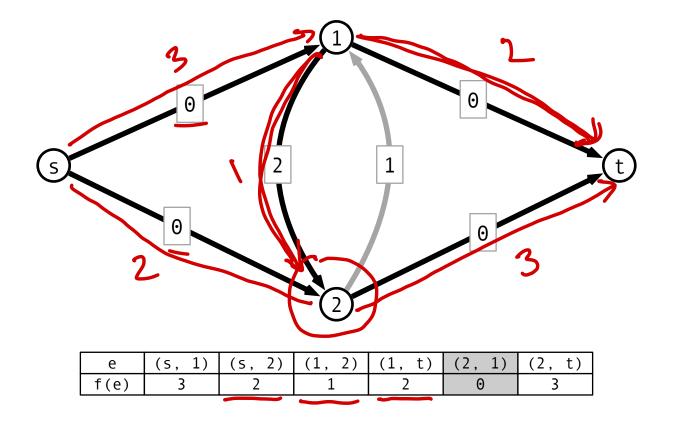


e	(s, 1)	(s, 2)	(1, 2)	(1, t)	(2, 1)	(2, t)
f(e)	3	Θ	3	Θ	0	3



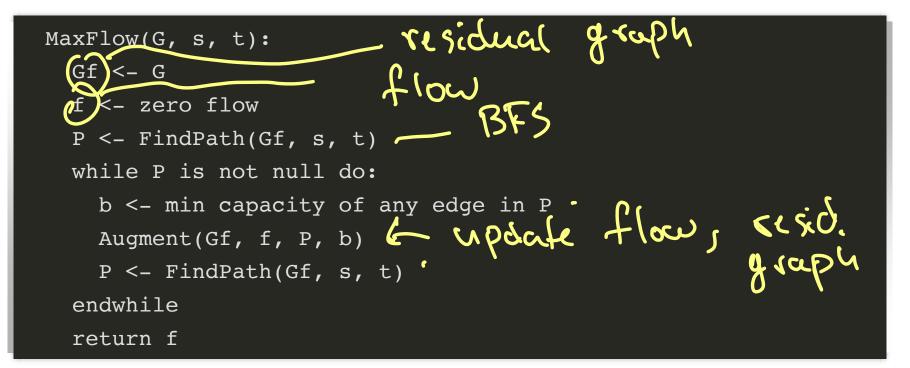


e	(s, 1)	(s, 2)	(1, 2)	(1, t)	(2, 1)	(2, t)
f(e)	3	2	1	2	0	3



Questions
How do we b = min remaining
1. find augmenting bath P from s to t?
2. update flow f according to P? (u,v) is focuard edge, increment f(u,v) by b
(u,u) is backward edge: decrement
B. update residual graph G_f ?
(U,V) is find edge: decrement captury) by b J find edge increment captury) by b J find edge (U,V) is backward edge: Same!
(u,v) is backward edge: Same!

Formalizing Ford-Fulkerson



Augment Procedure

```
Augment(Gf, f, P, b):

for each edge (u, v) in P

if (u, v) is forward edge then

\int f(u, v) <- f(u, v) + b

c(u, v) <- c(u, v) - b

c(v, u) <- c(v, u) + b

else

f(v, u) <- f(v, u) - b

c(v, u) <- c(v, u) + b
```

Running Time

n = # nodes m = # edges

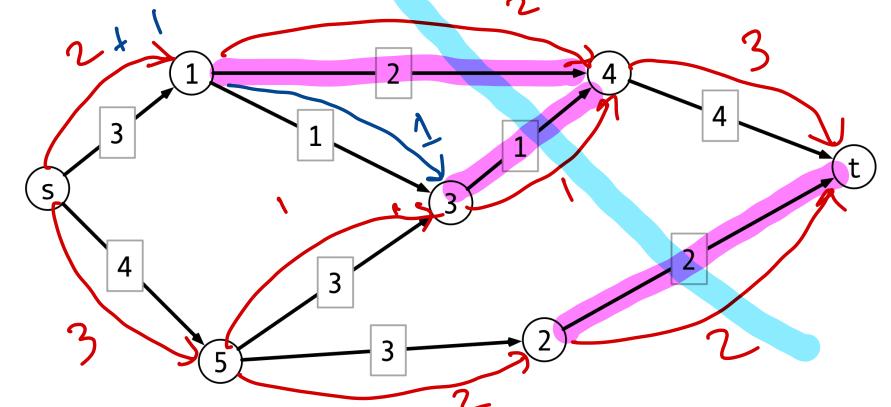
Assume:

- 1. all capacities are integers 2. C = sum of capacites of edges out of *s* **Observe:**
- 1. How long to find augmenting path *P*? O(M).
- 2. How long to run Augment? $(\gamma(m))$ $(\gamma(n))$
- 3. How many iterations of find/augment?

4 C be each ifer. in creases Val by ≥ in creases

Optimality of Flow?

Question. How do we know this flow is optimal?



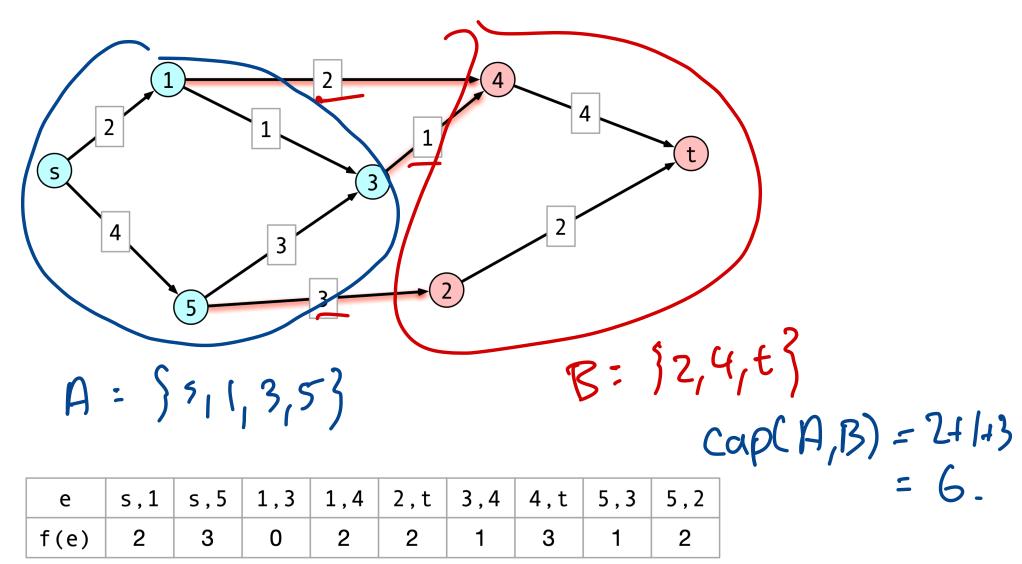
e	s,1	s,5	1,3	1,4	2,t	3,4	4,t	5,3	5,2
f(e)	2	3		2	2	1	হ্ব 3	1	2

Cuts

Definition. An s - t cut (A, B) is a partition of vertices into two disjoint sets with s in A and t in B.

The **capacity** of (A, B), denoted cap(A, B) is the sum of the capacities of the edges out of A.

Cut Example



Correctness of Ford-Fulkerson

Idea. Relate values of flows to capacities of cuts:

• max flow = min cut

Outline:

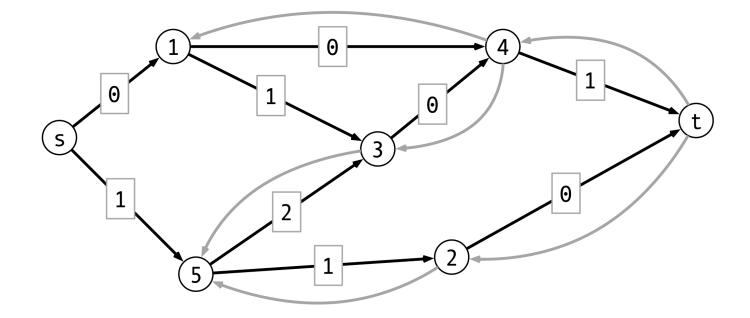
- for any cut (A, B), net flow across cut = value of flow
 ⇒ max flow ≤ min cut
- if *f* has no augmenting path in residual graph, then there is a cut with net flow = value of cut

$$\Rightarrow$$
 value of f = capacity of cut

• \implies $\operatorname{val}(f) = \operatorname{cap}(A, B) \ge \min \operatorname{cut}$

Together these imply Ford-Fulkerson produces max flow

Max Flow/Min Cut Example



e	s,1	s,5	1,3	1,4	2,t	3,4	4,t	5,3	5,2
f(e)	2	3	1	1	2	1	2	1	2

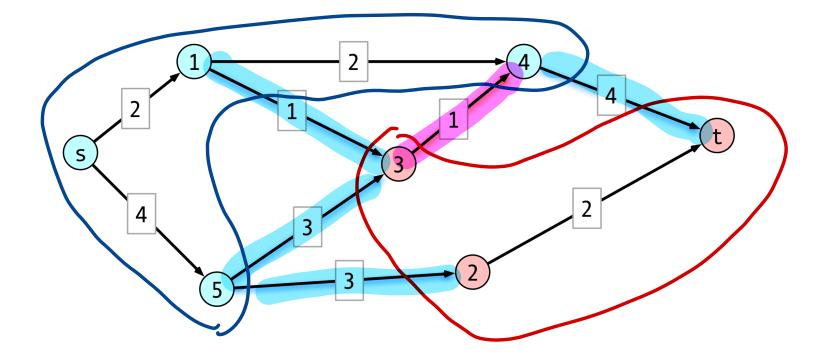
Claim 1

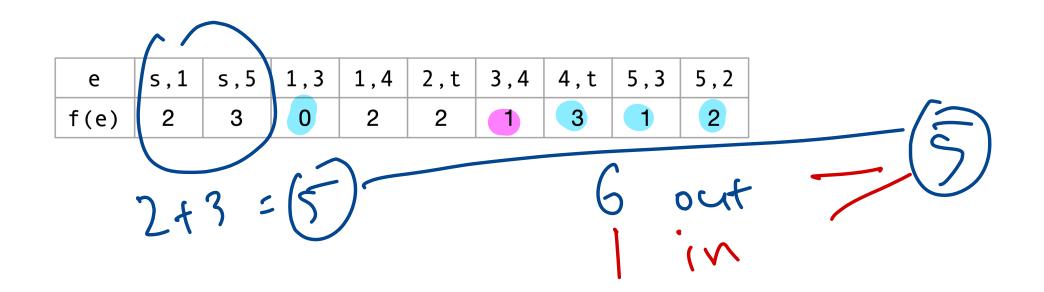
For any *s* - *t* cut (*A*, *B*) and flow *f*, val(*f*) = $f^{\text{out}}(A) - f^{\text{in}}(A)$

- $f^{\text{out}}(A) = \text{flow out of } A$
- $f^{\text{in}}(A) = \text{flow into } A$

Consequence. For all cuts (A, B), val $(f) \leq cap(A, B)$

Claim 1 Illustration





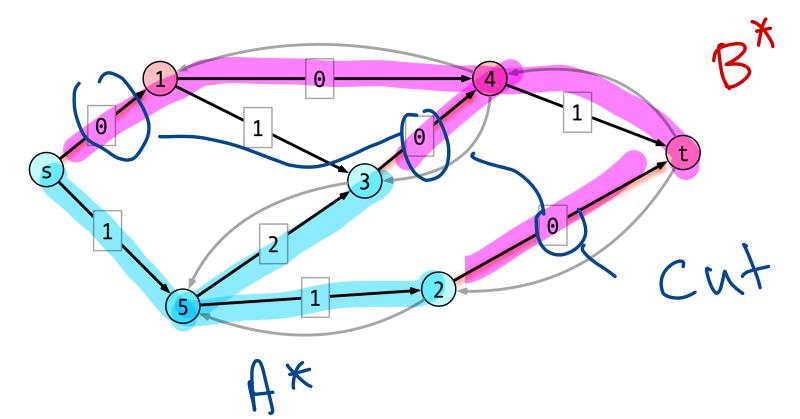
Claim 2

Suppose f does not have an augmenting path in the auxiliary graph.

- A^* = nodes reachable from *s* in auxiliary graph
- B^* = nodes not reachable

Then $val(f) = cap(A^*, B^*)$

Claim 2 Illustration



e	s,1	s,5	1,3	1,4	2,t	3,4	4,t	5,3	5,2
f(e)	2	3	1	1	2	1	2	1	2

Correctness Follows

Consider flow f found by Ford-Fulkerson.

- 1. By claim 1, no flow can have value larger than any cut capacity
- 2. By claim 2, val(f) = cap(A, B)

These imply:

- 1. f is a maximum flow
- 2. (A, B) is a minimum cut

Conclusion

G = (V, E) a weighted, directed graph with minimum cut capacity *C*.

Ford-Fulkerson finds maximum flow in time O(Cm).

• can be modified to find minimum cut as well

Next Time

- 1. Midterm on Wednesday
- 2. Stable Matching + Will's research on Friday
- 3. Reductions and NP completeness after break