
Lecture 28: Network Flow

COSC 311 Algorithms, Fall 2022
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Last Time
Bellman-Ford Algorithm for SSSP

De!nition. For each  de!ne 
length of shortest path from  to  consisting of  hops.

j = 0, 1, … , n − 1 (u, v) =dj
u v ≤ j

Observations.

1. If  has no negative weight cycles then 

2. For all , 

G
d(u, v) = (u, v)dn−1

j
(u, x) = min( (u, x), (u, v) + w(v, x))dj dj−1 minv→x dj−1

Idea. Use second observation to compute 
 for all .(u, x), (u, x), … , (u, x)d0 d1 dn−1 x
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Bellman-Ford Algorithm

Running time is  if  has  vertices and  edges.

  Bellman-Ford(V, E, w, u)
    d <- 2d array [0..n-1, 1..n]
    for v = 1 to n do d[0, v] <- infinity
    d[0, u] <- 0
    for j = 1 to n-1 do
      for each vertex v in V set d[j, v] <- d[j-1,v]
      for each vertex v in V
        for each neighbor x of v
          d[j, x] <- Min(d[j, x], d[j-1, v] + w[v, x])
    return d[n-1]

O(mn) G n m

n+)*Omi
-

Olmn)



Correctness
Claim. For all  and for all vertices , 

 stores length of shortest path from  to  with  or
fewer hops. I.e., 

Proof. Induction on .

Base case, .

j = 0, 1, … , n − 1 v
d[j, v] u v j

d[j, v] = (v)dj

j
j = 0

val in array

f
*Dt length of shortest

path from a tow

w) at most
-

O u = v S hops.

$20,3 = Sof otherwise



Inductive Step, 
suppose  for all 

consider shortest path  of  hops from  to 

let  be penultimate vertex in 

then 

by inductive hypothesis, 

therefore in iteration , get 

also have  (why?)

so 

j − 1 ⟹ j
d[j − 1, v] = (v)dj−1 v

P ≤ j u v
x P

(v) = (x) + w(x, v)dj dj−1
(x) = d[j − 1, x]dj−1

j
d[j, v] ≤ d[j − 1, x] + w(x, v) = (x) + w(x, v) = (v)dj−1 dj

d[j, v] ≥ (v)dj
d[j, v] = (v)dj

-

--

-> -
D
-
-

----- ~i
↑
- XWix,2)

④-⑳
afileNo1x is

correct



Conclusion
If  has no negative weight cycles, then Bellman-Ford
solves single source shortest paths in  time.

G
O(mn)



Dijkstra vs Bellman-Ford?
Running times:

Dijkstra: 

Bellman-Ford: 

Why pick Bellman-Ford over Dijkstra?

O(m log n)
O(mn)
* logn

K I

D

if G has negative
weights!



Dijkstra vs Bellman-Ford?
Running times:

Dijkstra: 

Bellman-Ford: 

Why pick Bellman-Ford over Dijkstra?

O(m log n)
O(mn)

Why might Bellman-Ford be preferable even if graph
has no negative weight edges?



Bellman-Ford Again
  Bellman-Ford(V, E, w, u)
    d <- 2d array [0..n-1, 1..n]
    for v = 1 to n do d[0, v] <- infinity
    d[0, u] <- 0
    for j = 1 to n-1 do
      for each vertex v in V set d[j, v] <- d[j-1,v]
      for each vertex v in V
        for each neighbor x of v
          d[j, x] <- Min(d[j, x], d[j-1, v] + w[v, x])
    return d[n-1]
--

"Distributed Algorithm"
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Soviet Rail Network, ca. 1955
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Networks to Graphs
Modeling the network:

nodes represent railway junctions
edges represent rail lines
weights represent capacities of lines

capacity  tonnage that can cross line per unit time
proportional to cost of disrupting line

=



Networks to Graphs
Modeling the network:

nodes represent railway junctions
edges represent rail lines
weights represent capacities of lines

capacity  tonnage that can cross line per unit time
proportional to cost of disrupting line

=

Question 1. How much material can the USSR transport to
Western Europe per unit time?

Question 2. What is the cheapest way to disrupt "ow of all
material?

Harris & Ross, 1955 USAF, declassi!ed 1999
-



Network Flow
A new interpretation of directed graphs:

network of (directional) pipes
weights are capacities

how much "uid can "ow through piper per time
designated source node 

all edges directed away from 

designated sink or destination node 

all edges directed towards 

Question. How much "uid be routed from  to  per unit
time?

s
s

t
t

s t

S



Example

O O



Flows, Formally
Setup.

 a directed graph,  source and sink

 is capacity of edge 

Flows. An s-t "ow  is a function  satisfying:

1. capacity constraints: for each edge , 

2. conservation: for every vertex , "ow into  "ow
out of :

The value of the "ow  is 

G = (V , E) s, t
c(u, v) (u, v)

f f : E → R+

e f (e) ≤ c(e)
v ≠ s, t v =

v
f (x, v) = f (v, y)∑x→v ∑v→y

f val(f ) = f (s, v)∑s→v

fle): amount
of flow

crossing e

-

⑧ O
-



Flow Example 1
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Flow Example 2
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Max Flow Problem
Input.

weighted directed graph 

weights = edge capacities 

source , sink 

all edges oriented out of 

all edges oriented into 

Output.

"ow  of maximum value

G = (V , E)
> 0

s t
s

t

f
val(f ) = f (s, v)∑s→v



A Simple Greedy Strategy
Repeat until done:

1. !nd an “unsaturated” path  from  to 

2. !nd minimum (remaining) capacity  along 

3. route  units of "ow along 

P s t
b P

b P



Greedy Approach Example



Choosing Di#erent First Path



Greedy Issue
Flow along  may block other viable paths

Question. How to !x this?

P



Augmenting Paths
Idea. Add “undo” feature for each edge

if  routes  "ow from  to , add reverse
edge  with capacity 

using  corresponds to “pushing back” "ow from 

if an alternate route for this "ow can be found, then
more "ow can be routed through 

f f (u, v) ≤ c(u, v) u v
(v, u) c(v, u) = f (u, v)
(v, u)

(u, v)

u



Pushing Back Example



The Residual Graph
 original graph

 a "ow on 

Residual graph 

vertex set 

for each , add  to 

 is forward edge

 is backward edge

in  capacity of  is:

 if  (forward edge)

 if  (backward edge)

G = (V , E)
f G

= ( , )Gf Vf Ef

= VVf
(u, v) ∈ E (v, u) Ef

(u, v)
(v, u)
Gf (u, v)
c(u, v) − f (u, v) (u, v) ∈ E
f (v, u) (v, u) ∈ E



Residual Graph Example



Ford-Fulkerson Algorithm
Very high level

1. Initialize residual graph, "ow 

2. While there is a path from  to  in residual graph do:

!nd path  from  to 

ignore edges with capacity 

 minimum capacity along 

augment "ow  by  along 
update residual graph

3. return 

f
s t

P s t
0

b ← P
f b P

f



Question
We’ve found a path  with minimum capacity !

Question. How do we…

1. update "ow ?

2. update residual graph ?

P b > 0

f
Gf



Example
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Formalizing Ford-Fulkerson
  MaxFlow(G, s, t):
    Gf <- G
    f <- zero flow
    P <- FindPath(Gf, s, t)
    while P is not null do:
      b <- min capacity of any edge in P
      Augment(Gf, f, P, b)
      P <- FindPath(Gf, s, t)
    endwhile
    return f



Augment Procedure
  Augment(Gf, f, P, b):
    for each edge (u, v) in P
      if (u, v) is forward edge then
        f(u, v) <- f(u, v) + b
        c(u, v) <- c(u, v) - b
        c(v, u) <- c(v, u) + b
      else
        f(v, u) <- f(v, u) - b
        c(v, u) <- c(v, u) + b
        c(u, v) <- c(u, v) - b



Running Time
Assume:

1. all capacities are integers
2.  sum of capacites of edges out of 

Observe:

1. How long to !nd augmenting path ?

2. How long to run Augment?

3. How many iteraions of !nd/augment?

Conclude: Overall running time?

C = s

P



Next Time
Ford-Fulkerson Correctness!


