
Lecture 27: Shortest Paths,
Revisited

COSC 311 Algorithms, Fall 2022

Announcements
1. HW 05 Due this Friday
2. Midterm 2 Wednesday 11/16

in class
focus on material since last midterm up to this Friday
algorithmic paradigms:

divide and conquer
greedy
dynamic programming
network !ow

mixture of computational and algorithm design
questions
details forthcoming

?

Directed Graphs and Paths

Representing Directed Graphs
Adjacency List

’s neighbors are outgoing neighborsv

1: 3, 4

2: 5

3: 2, 6

4: 2, 5

5: G

6:2, 5

Single Source Shortest Paths
Input:

(Directed) graph , edge weights

Starting vertex

Output:

 distance from to for every vertex

distance is length of shortest directed path from to
length is sum of edge weights of path

G = (V , E) w
u

d(v) = u v v
u v

-

vi.Q
0 2

W(P)= 2)3+1+5+2 = 13

Previous Algorithms
1. Breadth-"rst Search (BFS)

solves SSSP when all edge weights are
2. Dijkstra’s Algorithm

solves SSSP when all edge weights are

1

≥ 0

Previous Algorithms
1. Breadth-"rst Search (BFS)

solves SSSP when all edge weights are
2. Dijkstra’s Algorithm

solves SSSP when all edge weights are

1

≥ 0
Question. What if edge weights can be negative?

Example 1
Question 1. Why can Dijkstra fail when edge weights can
be negative?

oort

Example 2
Question 2. Why might shortest paths not exist when edge
weights can be negative?

I I-oo
-I ↑ I*

Assumption
Assume. does not contain any negative weight cycles.G

Assumption
Assume. does not contain any negative weight cycles.G
Claim. a graph with vertices, vertices in . If
does not contain negative weight cycles, then the shortest
(weighted) path from to contains at most edges.

Why?

G n u, v G G

u v n − 1
IU edges, Ant) vertices

=>duplicate
same
~

o

addso
ledges i
how many vertices? Att

Shortest Paths Again
Suppose shortest path from to contains hops.

 is ’s “parent” along path

shortest path from to has hops

u x j
v x
d(u, x) = d(u, v) + w(v, x)

u v j − 1
shortest path from u to X

aloto⑳

Dynamic Programming Approach
Idea. For each vertex and each
compute length of shortest path from to with
at most hops.

Note .

v j = 1, 2, … , n − 1
(u, v) =dj u v

j
d(u, v) = (u, v)dn−1

O,

-

11 1 1 1 I

-

toofEEc
dist,Yo

Questions
Question 1. How to initialize ?(u, v)d0

doCu,v) = Sourrise

Questions
Question 1. How to initialize ?(u, v)d0

Question 2. Given for all v, how to "nd ?(u, v)dj (u, v)dj+1
look at each "in" neighbor X

↑
compare

di (u,x) +
(,v) *-
* ↑↓a ⑰z
I

dix,(u,
v). I

I
T

If smaller,
update disurs

<dilu,x)
+wx,2).

Illustration

2

3
-2

4

4

4

1

1

1
-3

-1

2
2 -2

1

#

⑬ *

f
&

⑧
g

②

0

3

2

.

.

.

.

.

.2

3
-2

4

4

4

1

1

1
-3

-1

2
2 -2

1

⑰
*C
↑ ⑬

0

3

2

1

7

6

.

.

.2

3
-2

4

4

4

1

1

1
-3

-1

2
2 -2

1⑧↳⑰

0

3

2

1

7

2

5

9

72

3
-2

4

4

4

1

1

1
-3

-5

2
2 -2

1 o
8 - B

0

3

2

1

7

2

4

9

32

3
-2

4

4

4

1

1

1
-3

-5

2
2 -2

1

:

0

3

2

1

7

1

4

9

32

3
-2

4

4

4

1

1

1
-3

-5

2
2 -2

1

O

0

3

2

1

7

1

4

9

22

3
-2

4

4

4

1

1

1
-3

-5

2
2 -2

1

0

3

2

1

7

1

4

9

22

3
-2

4

4

4

1

1

1
-3

-5

2
2 -2

1

Bellman-Ford Algorithm

Running time?

 Bellman-Ford(V, E, w, u)
 d <- 2d array [0..n-1, 1..n]
 for v = 1 to n do d[0, v] <- infinity
 d[0, u] <- 0
 for j = 1 to n-1 do
 for each vertex v in V set d[j, v] <- d[j-1,v]
 for each vertex v in V
 for each neighbor x of v
 d[j, x] <- Min(d[j, x], d[j-1, v] + w[v, x])
 return d[n-1]

n vert, dist.
M edges #hopsvertex ; hopof dri,V3 F front

v
& ↑

T I
3

-am
-

On.m)

Correctness
Claim. For all and for all vertices ,

 stores length of shortest path from to with or
fewer hops. I.e.,

Proof. Induction on .

Base case, .

j = 0, 1, … , n − 1 v
d[j, v] u v j

d[j, v] = (v)dj

j
j = 0

Inductive Step,
suppose for all

consider shortest path of hops from to

let be penultimate vertex in

then

by inductive hypothesis,

therefore in iteration , get

also have (why?)

so

j − 1 ⟹ j
d[j − 1, v] = (v)dj−1 v

P j u v
x P

(v) = (x) + w(x, v)dj dj−1
(x) = d[j − 1, x]dj−1

j
d[j, v] ≤ d[j − 1, x] + w(x, v) = (x) + w(x, v) = (v)dj−1 dj

d[j, v] ≥ (v)dj
d[j, v] = (v)dj

Conclusion
If has no negative weight cycles, then Bellman-Ford
solves single source shortest paths in time.

G
O(mn)

Dijkstra vs Bellman-Ford?
Running times:

Dijkstra:

Bellman-Ford:

Why pick Bellman-Ford over Dijkstra?

O(m log n)
O(mn)

Dijkstra vs Bellman-Ford?
Running times:

Dijkstra:

Bellman-Ford:

Why pick Bellman-Ford over Dijkstra?

O(m log n)
O(mn)

Why might Bellman-Ford be preferable even if graph
has no negative weight edges?

Bellman-Ford Again
 Bellman-Ford(V, E, w, u)
 d <- 2d array [0..n-1, 1..n]
 for v = 1 to n do d[0, v] <- infinity
 d[0, u] <- 0
 for j = 1 to n-1 do
 for each vertex v in V set d[j, v] <- d[j-1,v]
 for each vertex v in V
 for each neighbor x of v
 d[j, x] <- Min(d[j, x], d[j-1, v] + w[v, x])
 return d[n-1]

Next Time: Cold War

Rail Network of Eastern Europe

Networks to Graphs
Modeling the network:

nodes represent railway junctions
edges represent rail lines
weights represent capacities of lines

capacity indicates tonnage that can cross line per unit
time
proportional to cost of disrupting movement along
line

Question 1. How much material can the USSR transport to
Western Europe per unit time?

Question 2. What is the cheapest way to disrupt !ow of
material?

Network Flow
A new interpretation of directed graphs:

network of (directional) pipes
weights are capacities

how much !uid can !ow through piper per time
designated source node

all edges directed away from

designated sink or destination node

all edges directed towards

Question. How much !uid be routed from to per unit
time?

s
s

t
t

s t

