
Lecture 27: Shortest Paths,
Revisited

COSC 311 Algorithms, Fall 2022



Announcements
1. HW 05 Due this Friday
2. Midterm 2 Wednesday 11/16

in class
focus on material since last midterm up to this Friday
algorithmic paradigms:

divide and conquer
greedy
dynamic programming
network !ow

mixture of computational and algorithm design
questions
details forthcoming

?



Directed Graphs and Paths



Representing Directed Graphs
Adjacency List

’s neighbors are outgoing neighborsv

1: 3, 4

2: 5

3: 2, 6

4: 2, 5

5: G

6:2, 5



Single Source Shortest Paths
Input:

(Directed) graph , edge weights 

Starting vertex 

Output:

 distance from  to  for every vertex 

distance is length of shortest directed path from  to 
length is sum of edge weights of path

G = (V , E) w
u

d(v) = u v v
u v

-

vi.Q
0 2

W(P)= 2)3+1+5+2 = 13



Previous Algorithms
1. Breadth-"rst Search (BFS)

solves SSSP when all edge weights are 
2. Dijkstra’s Algorithm

solves SSSP when all edge weights are 

1

≥ 0



Previous Algorithms
1. Breadth-"rst Search (BFS)

solves SSSP when all edge weights are 
2. Dijkstra’s Algorithm

solves SSSP when all edge weights are 

1

≥ 0
Question. What if edge weights can be negative?



Example 1
Question 1. Why can Dijkstra fail when edge weights can
be negative?

oort



Example 2
Question 2. Why might shortest paths not exist when edge
weights can be negative?

I I-oo
-I ↑ I*



Assumption
Assume.  does not contain any negative weight cycles.G



Assumption
Assume.  does not contain any negative weight cycles.G
Claim.  a graph with  vertices,  vertices in . If 
does not contain negative weight cycles, then the shortest
(weighted) path from  to  contains at most  edges.

Why?

G n u, v G G

u v n − 1
IU edges, Ant) vertices

=>duplicate
same
~

o

addso
ledges i
how many vertices? Att



Shortest Paths Again
Suppose shortest path from  to  contains  hops.

 is ’s “parent” along path

shortest path from  to  has  hops

u x j
v x
d(u, x) = d(u, v) + w(v, x)

u v j − 1
shortest path from u to X

aloto⑳



Dynamic Programming Approach
Idea. For each vertex  and each 
compute  length of shortest path from  to  with
at most  hops.

Note .

v j = 1, 2, … , n − 1
(u, v) =dj u v

j
d(u, v) = (u, v)dn−1

O,

-

11 1 1 1 I

-

toofEEc
dist,Yo



Questions
Question 1. How to initialize ?(u, v)d0

doCu,v) = Sourrise



Questions
Question 1. How to initialize ?(u, v)d0

Question 2. Given  for all v, how to "nd ?(u, v)dj (u, v)dj+1
look at each "in" neighbor X

↑
compare

di (u,x) +
(,v) *-
* ↑↓a ⑰z
I

dix,(u,
v). I

I
T

If smaller,
update disurs

<dilu,x)
+wx,2).



Illustration
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Bellman-Ford Algorithm

Running time?

  Bellman-Ford(V, E, w, u)
    d <- 2d array [0..n-1, 1..n]
    for v = 1 to n do d[0, v] <- infinity
    d[0, u] <- 0
    for j = 1 to n-1 do
      for each vertex v in V set d[j, v] <- d[j-1,v]
      for each vertex v in V
        for each neighbor x of v
          d[j, x] <- Min(d[j, x], d[j-1, v] + w[v, x])
    return d[n-1]

n vert, dist.
M edges #hopsvertex ; hopof dri,V3 F front

v
& ↑

T I
3

-am
-

On.m)



Correctness
Claim. For all  and for all vertices , 

 stores length of shortest path from  to  with  or
fewer hops. I.e., 

Proof. Induction on .

Base case, .

j = 0, 1, … , n − 1 v
d[j, v] u v j

d[j, v] = (v)dj

j
j = 0



Inductive Step, 
suppose  for all 

consider shortest path  of  hops from  to 

let  be penultimate vertex in 

then 

by inductive hypothesis, 

therefore in iteration , get 

also have  (why?)

so 

j − 1 ⟹ j
d[j − 1, v] = (v)dj−1 v

P j u v
x P

(v) = (x) + w(x, v)dj dj−1
(x) = d[j − 1, x]dj−1

j
d[j, v] ≤ d[j − 1, x] + w(x, v) = (x) + w(x, v) = (v)dj−1 dj

d[j, v] ≥ (v)dj
d[j, v] = (v)dj



Conclusion
If  has no negative weight cycles, then Bellman-Ford
solves single source shortest paths in  time.

G
O(mn)



Dijkstra vs Bellman-Ford?
Running times:

Dijkstra: 

Bellman-Ford: 

Why pick Bellman-Ford over Dijkstra?

O(m log n)
O(mn)



Dijkstra vs Bellman-Ford?
Running times:

Dijkstra: 

Bellman-Ford: 

Why pick Bellman-Ford over Dijkstra?

O(m log n)
O(mn)

Why might Bellman-Ford be preferable even if graph
has no negative weight edges?



Bellman-Ford Again
  Bellman-Ford(V, E, w, u)
    d <- 2d array [0..n-1, 1..n]
    for v = 1 to n do d[0, v] <- infinity
    d[0, u] <- 0
    for j = 1 to n-1 do
      for each vertex v in V set d[j, v] <- d[j-1,v]
      for each vertex v in V
        for each neighbor x of v
          d[j, x] <- Min(d[j, x], d[j-1, v] + w[v, x])
    return d[n-1]



Next Time: Cold War



Rail Network of Eastern Europe



Networks to Graphs
Modeling the network:

nodes represent railway junctions
edges represent rail lines
weights represent capacities of lines

capacity indicates tonnage that can cross line per unit
time
proportional to cost of disrupting movement along
line

Question 1. How much material can the USSR transport to
Western Europe per unit time?

Question 2. What is the cheapest way to disrupt !ow of
material?



Network Flow
A new interpretation of directed graphs:

network of (directional) pipes
weights are capacities

how much !uid can !ow through piper per time
designated source node 

all edges directed away from 

designated sink or destination node 

all edges directed towards 

Question. How much !uid be routed from  to  per unit
time?

s
s

t
t

s t


