
Lecture 26: Sequence
Alignment and Shortest

Paths

COSC 311 Algorithms, Fall 2022

Overview
1. Sequence Alignment
2. Shortest Paths, Revisited

Matching Between Strings
Given strings and form a matching between characters

matching is a set of pairs of matched indices

Rules for matching:

each character is matched with at most one other
character

some characters may be unmatched
matched characters cannot “cross”

if , are matched with , then

X Y
M

(i, j) (,)i′ j′ i < i′ j < j′
· 2 3 4 5 G

X. ⑧

↓

ix....
Y
M = (,, 13, 72,23, 33,4), 24, 5), 15,6)

Sequence Alignment Problem
Input:

Sequences and of characters of length and ,
respectively
Penalties for omission/mismatch

Output:

A matching between indices of and

 minimizes total penalty of matching

X Y n m

δ, α

M X Y
M

ow

12 3 4 5 6 7 a 10

O CURR ANCE

/(11811
ou RRENI

8

(8

An Observation
Suppose

 sequence of length

 sequence of length

 a matching between and

Claim. Then at least one of the following holds:

1. is in

2. is unmatched in

3. is unmatched in

Why?

X n
Y m
M [1, n] [1, m]

(n, m) M
n M
m M

x BS 1..oot crossinga
Excluded possibility: M

4m matched, but not wh each

other (If so, they would cross.)

A Recursive Solution?
Idea. Use previous claim to give recursive characterization
of optimal alignment.

How?

① h,m are · .. Y
matched ⑱D->
find opt solin D

here (recursive) M

②n unmatched A
remove u, find oft matching

in

remaining chors

③ m unmatched - same procedure

A Recursive Solution?
Idea. Use previous claim to give recursive characterization
of optimal alignment.

How?

De!ne

 minimum penalty of aligning and

 is minimum penalty matching between and

by claim, there are three cases
1.

2. unmatched in

3. unmatched in

opt(i, j) = X[1..i]
Y[1..j]
Mi,j X[1..i]
Y[1..j]

(i, j) ∈ Mi,j
i Mi,j
j Mi,j

X#f*Y I
-

-

Recursive Solution?
Question. What is a recurrence relation for ?opt(i, j)
optimal value S

a if

8 otherwise

opt (is) = Min o -penal

if (ii)

matchetofthisistheo
x[iT#YIs]

-
I for not

if i unmatched S I
↑

Opt value matching

↓ S

opt value
· unmatched

if I

Question 1. How to
initialize p?

Iterative Solution
Construct a two dimensional array p[0..n, 0..m]

p[i, j] should store opt(i, j)

48

30

20

o

⑧ 8IE 38 48

Question 1. How to
initialize p?

Iterative Solution
Construct a two dimensional array p[0..n, 0..m]

p[i, j] should store opt(i, j)

Question 2. How to !ll
out p?

-

t -Omit YIj] #To+I for omission

= ·omit x (i)
o o

+5 for mission

L · match (iii)
↓f if mismatch

Example
X = [R, I, T , E]
Y = [T , I, E, R]
δ = α = 1
-

R I T E

T

I

E

R

1

2

3

4

0

1 2 3 40

2

3

2

=>
1 172.243
ot I2 3 4

0 1 2 3 4

1

2

3

4

R I T E

T

I

E

R

1

2

3

4

0

1 2 3 40

0 1 2 3 4

1 1 2 3 4

2

3

4

R I T E

T

I

E

R

1

2

3

4

0

1 2 3 40

x
is

0 1 2 3 4

1 1 2 3 4

2 2 1 2 3

3

4

R I T E

T

I

E

R

1

2

3

4

0

1 2 3 40

''s

0 1 2 3 4

1 1 2 3 4

2 2 1 2 3

3 3 2 2 2

4

R I T E

T

I

E

R

1

2

3

4

0

1 2 3 40

↓n is

0 1 2 3 4

1 1 2 3 4

2 2 1 2 3

3 3 2 2 2

4 3 3 3 3

R I T E

T

I

E

R

1

2

3

4

0

1 2 3 40

X *withaX-Match
<O
c E, E

c /s Omit T
-

from Y

Match I,I

↓chR,T

0 1 2 3 4

1 1 2 3 4

2 2 1 2 3

3 3 2 2 2

4 3 3 3 3

R I T E

T

I

E

R

1

2

3

4

0

1 2 3 40

Algorithm Pseudocode

Running time?

 Alignment(X, Y, a, d):
 p <- 2d array of dimension (n+1) x (m+1)
 for i from 0 to n, p[i, 0] <- i * d
 for j from 0 to m, p[0, j] <- j * d
 for i from 1 to n
 for j from 1 to m
 unmatchX <- p[i-1, j] + d
 unmatchY <- p[i,j-1] + d
 match <- p[i-1,j-1]
 if X[i] != Y[j] then match <- match + a
 p[i, j] <- Min(unmatchX, unmatchY, match)
 return p[n, m]

I nm
ifr

O(nm)

Conclusion
Optimal alignment between strings can be found in
time where strings have lengths and , respectively.

O(nm)
n m

Shortest Paths, Revisited

Directed Graphs and Paths

Representing Directed Graphs
Adjacency List

’s neighbors are outgoing neighborsv
1: 3,4
2: 5

O 32, 6

4:2, 5

5: G

6:2, 5

Previously
Single Source Shortest Paths (SSSP):

Input:

(Directed) graph , edge weights

Starting vertex

Output:

 distance from to for every vertex

G = (V , E) w
u

d(v) = u v v

Previous Algorithms
1. Breadth-!rst Search (BFS)

solves SSSP when all edge weights are
2. Dijkstra’s Algorithm

solves SSSP when all edge weights are

1

≥ 0

Previous Algorithms
1. Breadth-!rst Search (BFS)

solves SSSP when all edge weights are
2. Dijkstra’s Algorithm

solves SSSP when all edge weights are

1

≥ 0
Question. What if edge weights can be negative?

