
Lecture 26: Sequence
Alignment and Shortest

Paths

COSC 311 Algorithms, Fall 2022



Overview
1. Sequence Alignment
2. Shortest Paths, Revisited



Matching Between Strings
Given strings  and  form a matching between characters

matching  is a set of pairs of matched indices

Rules for matching:

each character is matched with at most one other
character

some characters may be unmatched
matched characters cannot “cross”

if ,  are matched with , then 
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Sequence Alignment Problem
Input:

Sequences  and  of characters of length  and ,
respectively
Penalties  for omission/mismatch

Output:

A matching  between indices of  and 

 minimizes total penalty of matching
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An Observation
Suppose

 sequence of length 

 sequence of length 

 a matching between  and 

Claim. Then at least one of the following holds:

1.  is in 

2.  is unmatched in 

3.  is unmatched in 

Why?
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A Recursive Solution?
Idea. Use previous claim to give recursive characterization
of optimal alignment.

How?
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③ m unmatched - same procedure



A Recursive Solution?
Idea. Use previous claim to give recursive characterization
of optimal alignment.

How?

De!ne

 minimum penalty of aligning  and 

 is minimum penalty matching between  and 

by claim, there are three cases
1. 

2.  unmatched in 

3.  unmatched in 

opt(i, j) = X[1..i]
Y[1..j]
Mi,j X[1..i]
Y[1..j]
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Recursive Solution?
Question. What is a recurrence relation for ?opt(i, j)
optimal value S

a if

8 otherwise

opt (is) = Min o -penal
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Question 1. How to
initialize p?

Iterative Solution
Construct a two dimensional array p[0..n, 0..m]

p[i, j] should store opt(i, j)
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Question 1. How to
initialize p?

Iterative Solution
Construct a two dimensional array p[0..n, 0..m]

p[i, j] should store opt(i, j)

Question 2. How to !ll
out p?
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Example
X = [R, I, T , E]
Y = [T , I, E, R]
δ = α = 1
-
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Algorithm Pseudocode

Running time?

  Alignment(X, Y, a, d):
    p <- 2d array of dimension (n+1) x (m+1)
    for i from 0 to n, p[i, 0] <- i * d
    for j from 0 to m, p[0, j] <- j * d
    for i from 1 to n
      for j from 1 to m
        unmatchX <- p[i-1, j] + d
        unmatchY <- p[i,j-1] + d
        match <- p[i-1,j-1]
        if X[i] != Y[j] then match <- match + a
        p[i, j] <- Min(unmatchX, unmatchY, match)
    return p[n, m]
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Conclusion
Optimal alignment between strings can be found in 
time where strings have lengths  and , respectively.

O(nm)
n m



Shortest Paths, Revisited



Directed Graphs and Paths



Representing Directed Graphs
Adjacency List

’s neighbors are outgoing neighborsv
1: 3,4
2: 5

O 32, 6

4:2, 5

5: G

6:2, 5



Previously
Single Source Shortest Paths (SSSP):

Input:

(Directed) graph , edge weights 

Starting vertex 

Output:

 distance from  to  for every vertex 

G = (V , E) w
u

d(v) = u v v



Previous Algorithms
1. Breadth-!rst Search (BFS)

solves SSSP when all edge weights are 
2. Dijkstra’s Algorithm

solves SSSP when all edge weights are 

1

≥ 0



Previous Algorithms
1. Breadth-!rst Search (BFS)

solves SSSP when all edge weights are 
2. Dijkstra’s Algorithm

solves SSSP when all edge weights are 

1

≥ 0
Question. What if edge weights can be negative?


