Lecture 26: Sequence
Alignment and Shortest

Paths

COSC 311 Algorithms, Fall 2022

Overview

1. Sequence Alignment
2. Shortest Paths, Revisited

Matching Between Strings

Given strings X and Y form a matching between characters
 matching M is a set of pairs of matched indices

Rules for matching:

e each character is matched with at most one other
character

= some characters may be unmatched
e matched characters cannot “cross”

v if (i, /), (',) are matched with i < i/, thenj < j’

. . 727 Y 5 6
X s @ @ o O

LY NN
Mo: (), 2)2), (3,1, (% 5), 5, 6)

Sequence Alignment Problem
Input:

e Sequences X and Y of characters of length n and m,
respectively

. Penaltieor omission/mismatch
Output:

e A matching M between indices of X and Y
e M minimizes total penalty of matching

o

c
Y\
G
4l
cQ
£

An Observation
Suppose

e X sequence of length n
e Y sequence of length m
e M a matching between [1,n] and [1, m]
Claim. Then at least one of the following holds:
1. (n,m)isin M
g. n is unmatched in M
. m 1s unmatched in M

Why? ‘ Y .

0\ ™ NO!*C\U«J\‘/'\)USV wot W eady
Ol (]:Q So, Ky ~would c_ms.)

A Recursive Solution?

Idea. Use previous claim to give recursive characterization
of optimal alignment.

How?

@ N, O«L P 4
\‘\/\IQSVC\:\LC&
. 4/7
rﬁ.\r\& OP{' SO\ N . D

Yse. (Tecudsive

@ \ U\.\I\V\'\OJ(C‘/\!LA

IWANGIU AR Q\NS\ 0
(L\V\O:((\‘(/\‘& C\er S ¢

(D m whwotcah — Some PYoce date

@Q MCLQC,\!\E'AQ N\

A Recursive Solution?

Idea. Use previous claim to give
of optimal alignment.

How? X

Define \(|){‘(\‘r

e opt(Z, j) = minimum penalty of aligning X[1..7] and
YTl

e M;; 1s minimum penalty matching between X[1..i] and
Y[1.Jj]

e by claim, there are three cases
1. (i,]) € Ml‘J'

2. 1 unmatched in M;;

lve characterization

3. junmatched in M; ;

Recursive Solution?

Question. What is a recurrence relation for opt(i, j)?
ook Vel uL

K G ;‘3’) yukc O‘P{'(& \, 3- l> { 7(&79‘“031

P{’(.) _ M.(\ O W“"{C
o) T A, ook(-L3) + & G
o\\VUL/ UP 2 w&;c-\/t:
0Pk V ’ ‘1
et O?w i~ &8 g
opk V= Vo "

_ \,\w\—c\/\ﬂ-ﬁ&\

[terative Solution

Construct a two dimensional array p[0..n, @..m]

e pli, jl should store opt(i,j)

Question 1. How to
= lize o7
initialize p 4 [y
< 3|3
2|98
> 6_
ol 0|5 [18 |20 (46
© 1 2 3
X index

[terative Solution

Construct a two dimensional array p[0..n, @..m]

e pli, jl should store opt(i,j)

Question 1. How to
initialize p?

Question 2. How to fill
out p?

1 = pwd YCsd
+ 8§ Lot owmisscm

- bw\.(* %C"}
N LS Fud waisseon

Y index

AN=NE

Z:f' = \Pﬂﬂ&fj“\ (;L53:>
Y o~ & wsad cw

Example

.X=[R9]9T9E]
.Y:[TalaEaR]
e O0=a=1

&

22|y

12 L¢3

\

|

0

4

3

2

0

(o]

i ﬂ@iHJ_NJ_wJ.A

31.. ‘&

31—4

le=2<4=3

:

2

2

1

i
el

N Lwth

4 3 3 3 3
L+

3 3 2 2 2
N 2

2 2 1 2 3
_'

1 1 2 o= 3 o=/

0] 1T2T3T4

0] 2 3 4

R I T E

Algorithm Pseudocode

Alignment(X, Y, a, d):
p <- 2d array of dimension (n+l) x (m+l)
for i from 0 to n, p[i, 0] <- i * d
for j from 0 to m, p[0, J] <- J * d
for i from 1 to n
for j from 1 tom
unmatchX <- p[i-1, j] + d

unmatchY <- p[i,j-1] + d \!* M (

match <- p[i-1,]-1]
if X[1i] != Y[Jj] then match <- match + a

p[i, J] <- Min(unmatchX, unmatchY, match)

(F(n-w)

return p[n, m]

Running time?

Conclusion

Optimal alignment between strings can be found in O(nm)
time where strings have lengths n and m, respectively.

Shortest Paths, Revisited

Directed Graphs and Paths

Representing Directed Graphs
Adjacency List

e v's neighbors are outgoing neighbors

| : BJL{
2§
3. ’Z/é
L: 2,5
5: 6
B:)_/Sf

Previously
Single Source Shortest Paths (SSSP):
Input:

e (Directed) graph G = (V, E), edge weights w
e Starting vertex u

Output:

e d(v) = distance from u to v for every vertex v

Previous Algorithms

1. Breadth-first Search (BFS)

e solves SSSP when all edge weights are 1
2. Dijkstra’s Algorithm
e solves SSSP when all edge weights are > 0

Previous Algorithms

1. Breadth-first Search (BFS)

e solves SSSP when all edge weights are 1
2. Dijkstra’s Algorithm
e solves SSSP when all edge weights are > 0

Question. What if edge weights can be negative?

