Lecture 25: Sequence
Alignment

COSC 311 Algorithms, Fall 2022



Announcement

Homework 5 Posted

e 3 Questions
e Third quest1on is challenge question

J_ Oﬂ‘j«c 5\L I\/\C, Su\oSUK



Overview

1. Finishing Knapsack Problem
2. Sequence Alignment



Knapsack Problem
Input:

1. Aset R of n requests, each having

SexUAU-
e duration (Weight@L \’\OW \0«/\0\ A(b (¢ ¢
. V&lUC@ C6

2. Total time (weight) budget B

Output: A set S of requests to service with

1. sum of durations of requests in § is at most B
2. sum of values of requests is maximized



. . o P
A Recurrence Relation oK
_(Q,vbv&ﬁ
Idea. keep track of remaining budget
e if 7, 1s not serviced, remaining budget is B

e if 1, 1s serviced, remaining budget is B — b,

—

Definition. Forj =0, 1, ..., n,l opt(]{,. C) Sis optimal value of
set of requests from 1,2, ..., j'with budget C.

Recurrence relation:

opt(n, B) = max(l)pt(ﬁ — 1, é}’\‘é"_l_ opt(p — 1, lj—\\b—&n)
- \

O™ - @(\(«\ NoY Of‘)f\- Wl

gQ:(Q"\C-Q'A‘ {3 SQ’(\/‘\Cﬂ—d




Computing Optimal Values

Assume. All durations b; are integers at most B.

Compute. To compute opt(n, B):

e Generate a two dimenstonal array max wherelmax [j, CI
stores the value Opt(] C) & _

e

Initialization. max [91, ®] <- 0forally U

Apply Recursion Relation.
e max[j, C] <- Max(max[j-1, C], v[J] + max[j-1,(C

SN R




Picture



Requests: B=8 conlaiws wmox pasfie  Copt)

P
b[iﬂ 12 g j %&\;&*ffgg\ﬁf ' & {s&*
Vil [(AGI5]6 5 eSS
x 4 \
/§/3 ~ 0
ok =20 3 Y
o s @ [970 [0k [y 4]y |4 |4
“ o (o]0fo[|O]olo[dlodo}
© 1 2 3 4 5 6 7 8



B=8

7

0|0

O |0 34 (4|7 |7

O |0 |0 (4 |4 (4 (4 (4 |4

12
3[2[(5)|4
413]|15[6

;
b[i]

Requests:

L4

v[i]

2
1

X9pUuTI

© |00 (060 [06]0 (0|0 (06

"bay

1 2U3 4 5 6 (1) 8

0

Budget



Requests: B=8 OQ\—U\&{}
i 1234
blil [3[2]5[4)
vii] [4]3]5]6 .
S\ o |0 |3 |4 [6 7 o redie] ‘30&“""’;
v So ¢
5 3]0 0|3 417 (7 |8 |&9 2 nerbsd
= 2 |0 |0 |3 |4 7 |7 [T t<souu S0
o 1[0 |0/ 214 2 |2 [a] 2 nd i
o |0 [0 Jo [0 [¢/]0foTole | wkws 7%
- ok  Soswe_
Lg © 1 2 3 4 5 6 7 8 a5 1 s
0Q< <o ¥ Budget 1> B PN ¢



Pseudocode

FindMax(R, n, B):
max <- new 2d array of dimension

set max[0, C] <- 0 for C = 0 to

forfrom l1 ton
m <- i-th request in R

for C from 0 to B =——
if b <= C then

max[j, C] <- Max(v + max[j-1, C-b], max[]J-1,C])
— MN—— —

else

max[j, C] <- max[]J-1, C]




Correctness
Claim. For all j and C, max[j C] = 0pt(] C)
Proof. Induction onj. g—\ VV\O\}C (\,\W QO\I\Qc&Q/‘QC‘S‘

Base case j = 0. Optimal subset of size O has value 0.




Correctness
Claim. For all j and C, max[j, C] = opt(j, C)
Proof. Induction onj.

Base case j = 0. Optimal subset of size O has value 0.
Inductive step] —> j+ 1. ~\ \[\B ) \\\[Q
e suppose claim true foralli <j ™ R ¢ _
e consider two possibilities: pee ”
1. requestj + 1 1s1n optirllal subset S /\
opt(j + 1, C) =@ @@C —m= Vit + ]

. 2. request j + 1 is not in optimal subset S

opt(j + 1, C) = opt(j, C) = max|j, C]

\—::‘%w&' Wf




Running Time?

FindMax(R, n, B):
max <- new 2d array of dimensions n+l, B+l
set max[0, C] <- 0 for C = 0 to B
for j from 1 to n
(b, v) <- i-th request in R
for C from 0 to B
if b <= C then

max[j, C] <- Max(v + max[j-1, C-b], max[]J-1,C])
else

max[j, C] <- max[]J-1, C]

return max[n, B]




Conclusion

For the knapsack problem with n requests and budget B,
we can find compute opt(n, B) in O(Bn) time.

o assuming the duration of each request is an integer



Sequence Alignment

ocurrance X [ Q

F

= News [.] Images © Maps : More Tools

Q Al Q Shopp

Aboutesults (0.48 ssconds)

Did you mean:Joccurrenc
v ey,




Question

How similar are the following strings?




Hamming Distance

For how many indices do the strings disagree?

L2 %5 4 5 6 7 g & (o

1 \
Olc|Ww|RIR[RIN[L|E [ X
.f,+ﬁ<7é+7e—ae4—eé-
Q| C C,U\RK.E\\#C«E_
— : k L*t




(Dis)similarity and Alignment

How could we transform one string into the other?

® C,U\RTL@N CE

LY

OL©UR@ENQ\:




Optimal Alignment

Given two strings/arrays X and Y form a matching between
characters

e matching M is a set of pairs of matched indices

\ A ) L, [O




Optimal Alignment

Given two strings/arrays X and Y form a matching between
characters

e matching M is a set of pairs of matched indices

Rules for matching:

e each character is matched with at most one other
character

» some characters may be unmatched
e matched characters cannot “cross”

= if (i, )), (i, j’) are matched with i < i/, thenj < j'
J J

T 3 4 s 67

€
&




Matching Penalties

Given a matching M between strings X and Y

e incur penalty| 0 If an index i in X or Y is unmatched
e incur penalit f (i,7) matched, X[i] # X[/] g e & l

Total penalty is sum of individual penalties

Example.




Sequence Alignment Problem
Input:

e Sequences X and Y of characters of length n and m,
respectively

e Penalties 0,  for omission/mismatch
Output:

e A matching M between indices of X and Y
e M minimizes total penalty of matching



