
Lecture 25: Sequence
Alignment

COSC 311 Algorithms, Fall 2022



Announcement
Homework 5 Posted

3 Questions
Third question is challenge question

"Longest Inc. Subseg."



Overview
1. Finishing Knapsack Problem
2. Sequence Alignment



Knapsack Problem
Input:

1. A set  of  requests, each having

duration (weight) 

value 

2. Total time (weight) budget 

Output: A set  of requests to service with

1. sum of durations of requests in  is at most 
2. sum of values of requests is maximized
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A Recurrence Relation
Idea. keep track of remaining budget

if  is not serviced, remaining budget is 

if  is serviced, remaining budget is 

De!nition. For ,  is optimal value of
set of requests from  with budget .

Recurrence relation:
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Computing Optimal Values
Assume. All durations  are integers at most .

Compute. To compute :

Generate a two dimensional array max where max[j, C]
stores the value 

Initialization. max[j, 0] <- 0 for all j

Apply Recursion Relation.

max[j, C] <- Max(max[j-1, C], v[j] + max[j-1, C
- b[j]])
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Pseudocode
  FindMax(R, n, B):
    max <- new 2d array of dimensions n+1, B+1
    set max[0, C] <- 0 for C = 0 to B
    for j from 1 to n
      (b, v) <- i-th request in R
      for C from 0 to B
        if b <= C then 
          max[j, C] <- Max(v + max[j-1, C-b], max[j-1,C])
        else
          max[j, C] <- max[j-1, C]
    return max[n, B]
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Correctness
Claim. For all  and , 

Proof. Induction on .

Base case . Optimal subset of size  has value .

j C max[j, C] = opt(j, C)
j

j = 0 0 0
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Correctness
Claim. For all  and , 

Proof. Induction on .

Base case . Optimal subset of size  has value .

j C max[j, C] = opt(j, C)
j

j = 0 0 0
Inductive step .

suppose claim true for all 
consider two possibilities:

1. request  is in optimal subset 

2. request  is not in optimal subset 

j ⟹ j + 1
i ≤ j

j + 1 S
opt(j + 1, C) = + opt(j, C − ) = + max[j, C −vj+1 bj+1 vj+1

j + 1 S
opt(j + 1, C) = opt(j, C) = max[j, C]
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Running Time?
  FindMax(R, n, B):
    max <- new 2d array of dimensions n+1, B+1
    set max[0, C] <- 0 for C = 0 to B
    for j from 1 to n
      (b, v) <- i-th request in R
      for C from 0 to B
        if b <= C then 
          max[j, C] <- Max(v + max[j-1, C-b], max[j-1,C])
        else
          max[j, C] <- max[j-1, C]
    return max[n, B]

O(Bn)



Conclusion
For the knapsack problem with  requests and budget ,
we can !nd compute  in  time.

assuming the duration of each request is an integer
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Sequence Alignment
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Question
How similar are the following strings?
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Hamming Distance
For how many indices do the strings disagree?
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(Dis)similarity and Alignment
How could we transform one string into the other?
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Optimal Alignment
Given two strings/arrays  and  form a matching between
characters

matching  is a set of pairs of matched indices

X Y
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Optimal Alignment
Given two strings/arrays  and  form a matching between
characters

matching  is a set of pairs of matched indices

X Y

M
Rules for matching:

each character is matched with at most one other
character

some characters may be unmatched
matched characters cannot “cross”

if ,  are matched with , then (i, j) ( , )i′ j′ i < i′ j < j′
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Matching Penalties
Given a matching  between strings  and 

incur penalty  if an index  in  or  is unmatched

incur penality  if  matched, 

Total penalty is sum of individual penalties

Example.

M X Y
δ i X Y
α (i, j) X[i] ≠ X[j]
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Sequence Alignment Problem
Input:

Sequences  and  of characters of length  and ,
respectively
Penalties  for omission/mismatch

Output:

A matching  between indices of  and 

 minimizes total penalty of matching

X Y n m

δ, α

M X Y
M


