
Lecture 25: Sequence
Alignment

COSC 311 Algorithms, Fall 2022

Announcement
Homework 5 Posted

3 Questions
Third question is challenge question

"Longest Inc. Subseg."

Overview
1. Finishing Knapsack Problem
2. Sequence Alignment

Knapsack Problem
Input:

1. A set of requests, each having

duration (weight)

value

2. Total time (weight) budget

Output: A set of requests to service with

1. sum of durations of requests in is at most
2. sum of values of requests is maximized

R n
br

vr
B

S
S B

Ahow long to
service

⑧ reg. r

↑

A Recurrence Relation
Idea. keep track of remaining budget

if is not serviced, remaining budget is

if is serviced, remaining budget is

De!nition. For , is optimal value of
set of requests from with budget .

Recurrence relation:

rn B
rn B − bn

j = 0, 1, … , n opt(j, C)
1, 2, … , j C

opt(n, B) = max(opt(n − 1, B), + opt(n − 1, B −))vn bn

index
of

~ equest

/
--
- -

--
· ↓

Opt. if Un not optiforredservicea

Computing Optimal Values
Assume. All durations are integers at most .

Compute. To compute :

Generate a two dimensional array max where max[j, C]
stores the value

Initialization. max[j, 0] <- 0 for all j

Apply Recursion Relation.

max[j, C] <- Max(max[j-1, C], v[j] + max[j-1, C
- b[j]])

bi B
opt(n, B)

opt(j, C)

-

-

1
-

o
O &

T T ↳C

-

C
S --
-

Picture

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0 1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

contains max profit (opt)

fef,becastofsetof first
⑧ ↑ 3 requests

Mox
index frstioen

time budget

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

3

0

0

4

4

0

4

4

0

7

4

0

7

4

0

7

4

0

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

o =go
W

D D

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

0

0

3

3

3

0

0

4

4

4

4

0

6

4

4

4

0

7

7

7

4

0

9

7

7

4

0

10

8

7

4

0

10

8

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

Opt(n,B)

W

of ! not same↳ is

B 19 so
included

⑭-same so

t 3 not includedI

neither is 2W I not some
I 4) is

- go 2 is

opt set
B included.

Pseudocode
 FindMax(R, n, B):
 max <- new 2d array of dimensions n+1, B+1
 set max[0, C] <- 0 for C = 0 to B
 for j from 1 to n
 (b, v) <- i-th request in R
 for C from 0 to B
 if b <= C then
 max[j, C] <- Max(v + max[j-1, C-b], max[j-1,C])
 else
 max[j, C] <- max[j-1, C]
 return max[n, B]

↳ ofoB)
*OCB)

itrains
Running time? (CBn)

Correctness
Claim. For all and ,

Proof. Induction on .

Base case . Optimal subset of size has value .

j C max[j, C] = opt(j, C)
j

j = 0 0 0

- -
-

F may index considered

Correctness
Claim. For all and ,

Proof. Induction on .

Base case . Optimal subset of size has value .

j C max[j, C] = opt(j, C)
j

j = 0 0 0
Inductive step .

suppose claim true for all
consider two possibilities:

1. request is in optimal subset

2. request is not in optimal subset

j ⟹ j + 1
i ≤ j

j + 1 S
opt(j + 1, C) = + opt(j, C −) = + max[j, C −vj+1 bj+1 vj+1

j + 1 S
opt(j + 1, C) = opt(j, C) = max[j, C]

ind.hyp
theseis
are =

M

⑧

-
WIt Was
-

~

EonTrot hyp

Running Time?
 FindMax(R, n, B):
 max <- new 2d array of dimensions n+1, B+1
 set max[0, C] <- 0 for C = 0 to B
 for j from 1 to n
 (b, v) <- i-th request in R
 for C from 0 to B
 if b <= C then
 max[j, C] <- Max(v + max[j-1, C-b], max[j-1,C])
 else
 max[j, C] <- max[j-1, C]
 return max[n, B]

O(Bn)

Conclusion
For the knapsack problem with requests and budget ,
we can !nd compute in time.

assuming the duration of each request is an integer

n B
opt(n, B) O(Bn)
-

Sequence Alignment

-

&
a&

↑

Question
How similar are the following strings?

OCURR AN CE

IodgnishEvE

Hamming Distance
For how many indices do the strings disagree?

#iip

(Dis)similarity and Alignment
How could we transform one string into the other?

& CURRENCE

11:11(II)
OCCURRENCE
insert ChangeE
&

a

Optimal Alignment
Given two strings/arrays and form a matching between
characters

matching is a set of pairs of matched indices

X Y

M
12 3 4 5 6 7 ? a 10

!8.IEEEN & E
X

(I,D, (2,23, C3,4) , . . .

,
19, 10) = M

Optimal Alignment
Given two strings/arrays and form a matching between
characters

matching is a set of pairs of matched indices

X Y

M
Rules for matching:

each character is matched with at most one other
character

some characters may be unmatched
matched characters cannot “cross”

if , are matched with , then (i, j) (,)i′ j′ i < i′ j < j′

· ii"
1/11 1IoccuRREGE

Matching Penalties
Given a matching between strings and

incur penalty if an index in or is unmatched

incur penality if matched,

Total penalty is sum of individual penalties

Example.

M X Y
δ i X Y
α (i, j) X[i] ≠ X[j]
D
O 8 =x = 1

12 3 4 5 6 7 ? a 10

0 CU RR A N & E

1/ (1IN11)8
· cu RREN YEpnaH,

⑧ 8 + f

Sequence Alignment Problem
Input:

Sequences and of characters of length and ,
respectively
Penalties for omission/mismatch

Output:

A matching between indices of and

 minimizes total penalty of matching

X Y n m

δ, α

M X Y
M

