Lecture 25: Sequence
Alignment

COSC 311 Algorithms, Fall 2022



Announcement

Homework 5 Posted

e 3 Questions
e Third quest1on is challenge question
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Overview

1. Finishing Knapsack Problem
2. Sequence Alignment



Knapsack Problem
Input:

1. Aset R of n requests, each having
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2. Total time (weight) budget B

Output: A set S of requests to service with

1. sum of durations of requests in § is at most B
2. sum of values of requests is maximized
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A Recurrence Relation oK
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Idea. keep track of remaining budget
e if 7, 1s not serviced, remaining budget is B

e if 1, 1s serviced, remaining budget is B — b,

—

Definition. Forj =0, 1, ..., n,l opt(]{,. C) Sis optimal value of
set of requests from 1,2, ..., j'with budget C.

Recurrence relation:

opt(n, B) = max(l)pt(ﬁ — 1, é}’\‘é"_l_ opt(p — 1, lj—\\b—&n)
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Computing Optimal Values

Assume. All durations b; are integers at most B.

Compute. To compute opt(n, B):

e Generate a two dimenstonal array max wherelmax [j, CI
stores the value Opt(] C) & _

e

Initialization. max [91, ®] <- 0forally U

Apply Recursion Relation.
e max[j, C] <- Max(max[j-1, C], v[J] + max[j-1,(C

SN R
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Pseudocode

FindMax(R, n, B):
max <- new 2d array of dimension

set max[0, C] <- 0 for C = 0 to

forfrom l1 ton
m <- i-th request in R

for C from 0 to B =——
if b <= C then

max[j, C] <- Max(v + max[j-1, C-b], max[]J-1,C])
— MN—— —

else

max[j, C] <- max[]J-1, C]




Correctness
Claim. For all j and C, max[j C] = 0pt(] C)
Proof. Induction onj. g—\ VV\O\}C (\,\W QO\I\Qc&Q/‘QC‘S‘

Base case j = 0. Optimal subset of size O has value 0.




Correctness
Claim. For all j and C, max[j, C] = opt(j, C)
Proof. Induction onj.

Base case j = 0. Optimal subset of size O has value 0.
Inductive step] —> j+ 1. ~\ \[\B ) \\\[Q
e suppose claim true foralli <j ™ R ¢ _
e consider two possibilities: pee ”
1. requestj + 1 1s1n optirllal subset S /\
opt(j + 1, C) =@ @@C —m= Vit + ]

. 2. request j + 1 is not in optimal subset S

opt(j + 1, C) = opt(j, C) = max|j, C]
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Running Time?

FindMax(R, n, B):
max <- new 2d array of dimensions n+l, B+l
set max[0, C] <- 0 for C = 0 to B
for j from 1 to n
(b, v) <- i-th request in R
for C from 0 to B
if b <= C then

max[j, C] <- Max(v + max[j-1, C-b], max[]J-1,C])
else

max[j, C] <- max[]J-1, C]

return max[n, B]




Conclusion

For the knapsack problem with n requests and budget B,
we can find compute opt(n, B) in O(Bn) time.

o assuming the duration of each request is an integer



Sequence Alignment
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Question

How similar are the following strings?




Hamming Distance

For how many indices do the strings disagree?
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(Dis)similarity and Alignment

How could we transform one string into the other?
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Optimal Alignment

Given two strings/arrays X and Y form a matching between
characters

e matching M is a set of pairs of matched indices
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Optimal Alignment

Given two strings/arrays X and Y form a matching between
characters

e matching M is a set of pairs of matched indices

Rules for matching:

e each character is matched with at most one other
character

» some characters may be unmatched
e matched characters cannot “cross”

= if (i, )), (i, j’) are matched with i < i/, thenj < j'
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Matching Penalties

Given a matching M between strings X and Y

e incur penalty| 0 If an index i in X or Y is unmatched
e incur penalit f (i,7) matched, X[i] # X[/] g e & l

Total penalty is sum of individual penalties

Example.




Sequence Alignment Problem
Input:

e Sequences X and Y of characters of length n and m,
respectively

e Penalties 0,  for omission/mismatch
Output:

e A matching M between indices of X and Y
e M minimizes total penalty of matching



