Lecture 25: Sequence Alignment

COSC 311 Algorithms, Fall 2022

Announcement

Homework 5 Posted

- 3 Questions
- Third question is challenge question

"Longest Inc. Subseq."

Overview

- 1. Finishing Knapsack Problem
- 2. Sequence Alignment

Knapsack Problem

Input:

- duration (weight) b_r how long to service value v_r ? 1. A set *R* of *n* requests, each having
- 2. Total time (weight) budget B

Output: A set S of requests to service with

- 1. sum of durations of requests in S is at most B
- 2. sum of values of requests is maximized

A Recurrence Relation

Idea. keep track of *remaining budget*

- if r_n is not serviced, remaining budget is B
- if r_n is serviced, remaining budget is $B b_n$

Definition. For j = 0, 1, ..., n, opt(j, C) is optimal value of set of requests from 1, 2, ..., j with budget C.

index of sequest

Recurrence relation:

opt
$$(n, B) = \max(\operatorname{opt}(n-1, B), v_n + \operatorname{opt}(n-1, B-b_n))$$

orph-if (n not opt-if (n
serviced is serviced

Computing Optimal Values

Assume. All durations b_i are integers at most B.

Compute. To compute opt(n, B):

• Generate a *two dimensional array* max where max[j, C] stores the value opt(*j*, *C*)

Initialization. max [3, 8] <- 0 for all 5

Apply Recursion Relation.

• max[j, C] <- Max(max[j-1, C], v[j] + max[j-1, (C - b[j]])

Picture

Pseudocode

Correctness

Claim. For all j and C, $\max[j, C] = \operatorname{opt}(j, C)$ Proof. Induction on j. Frax index Considered Base case j = 0. Optimal subset of size 0 has value 0.

Correctness

Claim. For all *j* and *C*, max[j, C] = opt(j, C)

Proof. Induction on *j*.

Base case j = 0. Optimal subset of size 0 has value 0. *Inductive step* $j \implies j+1$.

- suppose claim true for all $i \leq j$
- consider two possibilities:
 - 1. request j + 1 is in optimal subset *S* $opt(j + 1, C) = v_{j+1} + opt(j, C - b_{j+1}) = v_{j+1} + max[j, C]$
- . 2. request j + 1 is not in optimal subset S opt(j + 1, C) = opt(j, C) = max[j, C]f(j, C) = max[j, C]

Running Time?

```
FindMax(R, n, B):
max <- new 2d array of dimensions n+1, B+1
set max[0, C] <- 0 for C = 0 to B
for j from 1 to n
(b, v) <- i-th request in R
for C from 0 to B
if b <= C then
max[j, C] <- Max(v + max[j-1, C-b], max[j-1,C])
else
max[j, C] <- max[j-1, C]
return max[n, B]
```

(HBn)

Conclusion

For the knapsack problem with n requests and budget B, we can find compute opt(n, B) in O(Bn) time.

• assuming the duration of each request is an integer

Sequence Alignment

ocurrance	X I Q
🔍 All 🔿 Shopping 🗉 News 🖬 Images 🛇 Maps 🚦	More Tools
About 9,560 esults (0.48 seconds)	
Did you mean: occurrence	

How similar are the following strings?

OCURRANCE OCCURRENCE

Hamming Distance

For how many indices do the strings *disagree*?

(Dis)similarity and Alignment How could we *transform* one string into the other?

Optimal Alignment

Given two strings/arrays X and Y form a *matching* between characters

• matching M is a set of pairs of matched indices

Optimal Alignment

Given two strings/arrays X and Y form a *matching* between characters

• matching *M* is a set of pairs of matched indices

Rules for matching:

- each character is matched with at most one other character
 - some characters may be unmatched
- matched characters cannot "cross"
 - if (i, j), (i', j') are matched with i < i', then j < j'

Matching Penalties

Given a matching M between strings X and Y

- incur penalty δ if an index *i* in *X* or *Y* is unmatched
- incur penality α if (i, j) matched, $X[i] \neq X[j]$

Total penalty is sum of individual penalties **Example**.

Sequence Alignment Problem

Input:

- Sequences X and Y of characters of length n and m, respectively
- Penalties δ , α for omission/mismatch

Output:

- A matching *M* between indices of *X* and *Y*
- *M* minimizes total penalty of matching