
Lecture 22: Intro to Dynamic
Programming

COSC 311 Algorithms, Fall 2022

Announcements
1. ‘22E Honors Thesis talks Today!

4-5pm in SCCE A131

1. Courses Next Semester

225 Algorithms and Visualization
273 Parallel and Distributed Computing

2

Overview
1. Memoization
2. Pro!t Maximization, Revisited

c

So Far
Algorithmic Paradigms

1. Divide and Conquer

2. Greedy

And now…

Dynamic Programming

Features of Dynamic Programming
1. Break problem into smaller sub-problems
2. Iterate over sub-problems to produce solution

Compare to divide and conquer:

1. Break problem into smaller sub-problems
2. Recursively solve sub-problems
3. Combine solutions

a

--

Issues with Recursion
Recall the Fibonacci Sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
a

--

Issues with Recursion
Recall the Fibonacci Sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
De!ned by:

1.

2. for ,

f (1) = f (2) = 1
n > 2 f (n) = f (n − 1) + f (n − 2)

base cases On
- recursi

- relation

Issues with Recursion
Recall the Fibonacci Sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
De!ned by:

1.

2. for ,

f (1) = f (2) = 1
n > 2 f (n) = f (n − 1) + f (n − 2)

Recursive code:

 Fib(n):
 if n <= 2 then return 1
 return Fib(n-1) + Fib(n-2)

base

-
~

recursive calls.
-

What is Running Time?
 Fib(n):
 if n <= 2 then return 1
 return Fib(n-1) + Fib(n-2)

& (1)
-

00-Bll

④ (n) =-1)
c/ A ↑T (n-2) +G(1)
& 2:T(n-2) +Q(1)
⑥ - L

⑭ # 2 4. TCW-4)-

> 7 ⑭ 2. 8.Tn-s)

C
O

"2"TEzh)
-

" T11) =$(2E)↓ =n- i => T (n) ?I

Redundant Recursive Calls
Recursive subproblems overlap

Memoization
Recursing without recursion

store results of recursive calls
iterate over results rather than making recursive calls

compute results “bottom up” rather than “top down”
iterate over stored values to compute “next” value

How to do for Fibonacci?

a b c I 6--

a: Is i 23 5 ⑧ ...5

a29] = atft ct13

* terate over = =3,4,5, . .., u

Set a 27 - atc-1] + aTi-2]

Memoized Fibonacci
 MFib(n):
 a <- array of size n
 a[1] <- 1
 a[2] <- 1
 for each index i from 3 to n do
 a[i] <- a[i-1] + a[i-2]
 endfor
 return a[n]

I 3 n-2 itrations

O(n).

Running Time?
 MFib(n):
 a <- array of size n
 a[1] <- 1
 a[2] <- 1
 for each index i from 3 to n do
 a[i] <- a[i-1] + a[i-2]
 endfor
 return a[n]

The Moral
With memoization, we converted

recursive procedure
many redundant recursive calls

running time

into

iterative procedure
running time

Ω()2n/2

O(n)

Pro!t Maximization

Recall: Pro!t Maximization

Goal. Pick day to buy and day to sell to maximize
pro!t.

b s

⑧

⑧

Formalizing the Problem
Input. Array of size

 price of Alphabet stock on day

Output. Indices (buy) and (sell) with that
maximize pro!t

a n
a[i] = i

b s 1 ≤ b ≤ s ≤ n

p = a[s] − a[b]
as a

Divide and Conquer Algorithm

Running time?

 MaxProfit(a, i, j):
 if j - i = 1 then return 0
 m <- (i + j) / 2
 left <- MaxProfit(a, i, m)
 right <- MaxProfit(a, m, j)
 min <- FindMin(a, i, m)
 max <- FindMax(a, m, j)
 return Max(left, right, max - min)

-II

-
/-On) time

xercise:OCnlogn) from MAT.

Another (Recursive) Procedure?
consider last day,
two cases for optimal solution:
1. max pro!t achieved by selling on day

2. max pro!t achieved by selling before day

Questions.

1. In case 1, how should we determine buy date?

2. In case 2, how should we compute max pro!t?

n

n
n

N

find min value in atr.],
buy on that day

Recursion:solve on
at1.. 1-13.

Recursive Procedure

Running time?

 MaxProfit(a, n):
 if n = 1 then return 0
 min <- FindMin(a, n)
 max <- MaxProfit(a, n-1)
 return max(a[n] - min, max)

⑰(n) before
- selling

a profit- - da.Y

Oof
↑ rof it selling on day n,
buying & min price
④- O(n)

⑭- QCu-11 add
-> QIn?)

↳ up

N->
O(n-2)Id

⑮
: · (1)

Questions
1. What makes MaxProfit ine"cient?

2. What part(s) of the procedure can be memoized?

2)uplicated work

computing min value

this
I

Memoizing MaxProfit
Create two arrays:

1. min[i] stores minimum value in a[1..i]
2. max[i] stores maximum pro!t achievable by selling up

to time i
Question. How to update these arrays?

