Lecture 22: Intro to Dynamic
Programming
COSC 311 Algorithms, Fall 2022

Announcements

1. ‘22E Honors Thesis talks Today!
e 4-5pm 1in SCCE Al31

A, Courses Next Semester

o 225 Algorithms and Visualization
e 273 Parallel and Distributed Computing

Overview

1. Memoization &
2. Profit Maximization, Revisited

So Far

Algorithmic Paradigms

1. Divide and Conquer

2. Greedy

And now...

Dynamic Programming

Features of Dynamic Programming

1. Break problem into smaller sub-problems
2. Jterate over sub-problems to produce solution

Compare to divide and conquer:

1. Break problem into smaller sub-problems
2. Recursively solve sub-problems
3. Combine solutions

Issues with Recursion
Recall the Fibonacci Sequence:

-_1_1_,2?‘5813213455
7

Issues with Recursion
Recall the Fibonacci Sequence:
e 1,1,2,3,5,8,13,21,34,55, ...
: caled .
Defined by: lbase D e A3 N

L) =f@Q)=1" o relafion
9. forn > 2, f(n) = f(n — 1) + f(n — 2)

Issues with Recursion
Recall the Fibonacci Sequence:
e 1,1,2,3,5,8,13,21,34,55, ...
Defined by:

Lf()=2)=1
9. forn > 2,f(n) = f(n— 1) + f(n — 2)

Recursive code:

Fib(n):

if n <= 2 then return 1 (’//
return Fib(n-1) + Fib(n-2)

What is Running Time?

Fib(n):
if n <= 2 then return_l ’//’

return Fib(n-1) p Fib(n-2)

Redundant Recursive Calls

Recursive subproblems overlap

Memoization

Recursing without recursion

e store results of recursive calls

e iterate over results rather than making recursive calls
= compute results “bottom up” rather than “top down”
= iterate over stored values to compute “next” value

How to do tor Fibonacci?
I+ 3« v g --
o [\ 2 2 9 B —1
afy) = aOF BbYS

T,LMMS«Q ove v =245, \
ot ol ol F «Ci-2f

Memoized Fibonacci

MFib(n):
a <- array of size n
a[l] <-1
a[2] <-1

for each index i from 3 to n do X \
[a[i] <- a[i-1] + a[i-2] j ‘n"z ‘O\hoV‘S

endfor

return a[n]

Running Time?

MFib(n):

a <- array of size n

a[l] <-1

a[2] <-1

for each index i from 3 to n do
a[i] <- a[i-1] + a[i-2]

endfor

return a[n]

The Moral

With memoization, we converted

e recursive procedure
e many redundant recursive calls

e running time Q(2"/%)
Into

e iterative procedure

e running time O(n)

Profit Maximization

Recall: Profit Maximization

Market Summary > Alphabet Inc Class A

98.74 uso

-42.33 (-30.01%) ¥ past year

Closed: Sep 23, 7:59 PM EDT -« Disclaimer
After hours 98.85 +0.11 (0.11%)

1D 5D 1M 6M YTD 1Y S5Y Max

160 141.07 USD Sep 27, 2021
1409

120

100 :

80— I | 1
Dec 2021 Apr 2022 Aug 2022

Goal. Pick day b to buy and day s to sell to maximize
profit.

Formalizing the Problem

Input. Array a of size n
e a[i] = price of Alphabet stock on day i

Output. Indices b (buy) and s (sell) with 1 < b < s < n that
maximize profit

o p = als] — alb]
e ~

L

I
Divide and Conquer Algorithm

MaxProfit(a, i, Jj):
if Jj - i =1 then return 0
m<- (i + 3j) / 2
left <- MaxProfit(a, i, m)

right <- MaxProfit(a, m, J

min <- FindMin(a, i, m

Running time?

E eceise - (? (V\ \oqfv\J “(:COV"\ M.

Another tRecursiVEQ Procedure?

e consider last day, n
e two cases for optimal solution:
1. max profit achieved by selling on day n

2. max profit achieved by selling before day n
Questions.

1. In case 1, how should we determine buy date?

fal win vlaw W ol

b OGN ok Aoy
2. In case 2, how should we compute max profit?

Qu,\usf()/\ . Solve own
aCtl..n~c§.

Recursive Procedure

MaxProfit(a, n):

if n = 1 then return 0

min <- FindMin(a, n)

max <- MaxProfit(a, n-1)

return max(a[n] - min,

o qu

Running time? Pioli Selli M&

\ou«{\wa C din Prica_

O o
Y Aat)

- 9(-)

@(t) /

N

Questions

1. What makes MaxProfit inefficient?

D U\PK(C OA—LA& UJ o~ b—
QOM(JWHA% MIA Vel Wi

2. What part(s) of the procedyre can be memoized?

BEVRTS

Memoizing MaxProfit

Create two arrays:

1. min[i] stores minimum valuein a[1..1i]

2. max[1i] stores maximum profit achievable by selling up
to time 1

Question. How to update these arrays?

