
Lecture 21: Interval
Scheduling

COSC 311 Algorithms, Fall 2022

Greedy Algorithms
So far: focused on (greedy) graph algorithms

1. Finding Eulerian circuits
greedily collect new edges

2. BFS (unweighted SSSP)
greedily explore nearest edges

3. Dijkstra (weighted SSSP)
greedily !nd closest vertex

4. Prim (MST)
greedily add lightest outgoing edge

5. Kruskal (MST)
greedily add lightest edge that doesn’t create a cycle

Today
Interval Scheduling

1. Interval scheduling problem & motivation
2. Greedy algorithm for interval scheduling
3. Analysis technique: algorithm stays ahead
--

Interval Scheduling
Motivation.

Timed access to !nite resource, e.g., CPU time
Receive requests consisting of

start time

end time
Only one request can be serviced at a time

cannot service two “overlapping” requests

s
t > s

classroom
--

- x)r
[1, 3] 5

":[4, 5]

- = [2,43

Interval Scheduling
Motivation.

Timed access to !nite resource, e.g., CPU time
Receive requests consisting of

start time

end time
Only one request can be serviced at a time

cannot service two “overlapping” requests

s
t > s

Goal. Find a set of requests to service that are:

1. feasible: no two requests overlap
2. optimal: as many requests as possible are serviced,

subject to feasibility

--

--

Example and Geometric View
View requests as intervals: r = [,]sr tr
start ench
time tinl

↓ ↓
1L If--

1H<compatible
--fH5

+ If1-

MH+

Ht

--

time
I

A Meta-Strategy
To !nd a feasible set of requests to service:

1. Pick a request to service (according to some criteria)

2. Remove all requests that overlap with
3. Repeat 1 and 2 until all requests have been chosen or

removed

Observe. This will always give a feasible set of requests.

Question. How to select a request at each step?

r
r ′ r

O
-

T
--

-

A I

Natural Greedy Selection Strategies
Select request…

1. …with earliest start time
2. …with shortest duration
3. …that overlaps the fewest other requests

1 +

1H+

<AIH+

- ↑I1-

1+

#AN

Natural Greedy Selection Strategies
Select request…

1. …with earliest start time
2. …with shortest duration
3. …that overlaps the fewest other requests

Exercise. Show that none of these strategies are
guaranteed to !nd a maximum feasible collection of
requests.I -

Another Strategy
Earliest deadline !rst:

select request with earliest deadline
--

1- 15- 1 151

I IT1 At

H x/ 1

+ H -T

A- iI
H

1I
1 ##1Al A +

#ind 5 compatible requests

EDF in Pseudocode
 # R a collection of requests, r = (s, t)
 EDF(R):
 sort R in ascending order of end time t
 curMax <- -infinity
 S <- empty collection
 for each request r = (s, t) in R do
 | if s > curMax then
 | | add r to S
 | | curMax <- t
 return S

--

I

=endot of latest
N

--

request added so

V

~a for
FAIf

3 6

1I

i10H
a

Correctness I
Clear: EDF returns a feasible collection of requests

Claim. EDF returns a maximum feasible collection of
requests.

Proof strategy. “EDF stays ahead”

 is set of requests selected by EDF

 is optimal (maximum) feasible collection

To show:

each request chosen in is at least as good as
corresponding request in

S
Sopt

S
Sopt

I I
-

-

<
--

+

Correctness II
Notation:

 is number of requests selected by EDF

 is number of requests selected by

Want to show:

S = {(,), (,), … , (,)}s1 t1 s2 t2 sk tk
< , < , …t1 s2 t2 s3

k
= {(,), (,), … , (,)}Sopt s′

1 t ′
1 s′

2 t ′
2 s′

ℓ t ′
ℓ

< , < , …t ′
1 s′

2 t ′
2 s′

3
ℓ Sopt

k ≥ ℓ

collection of veg.

found by EDF

< 2 C c

O
-

W
D

* S: xHHH +

*Set 1H
+H

Correctness III
Sub-claim. For all , .

Proof. Induction on .

i = 1, 2, … , k ≤ti t ′
i

i

-> s: 1 101d t
I L I I

"" 0-0-0
00

Base case i:1. EDF chooses (S, 7.7

wit, min among
all intervals in input.

-
↑

=> t, t,

=utive
step. Assume true

for i ieo

min among all
I intervals after

;
↓ Iti i (w/ S >ti)

vi
-M comes after
r
+- H

By choice of EtiCten after
tif, have this tie, this View

I

ti

Correctness IV
Sub-claim Claim. Argue by contradiction.⟹

contained in
opt, but not
added by
EDF

O
I
If

:***to C

<

(

T 7OH
Sopt Set text

suppose not, i.e. Sept contains strictly
more intervals.

⑱ K intervals added by, #DF

· by sub-claim
the tr

· by feasibility
and orching of intervals

sat 3 til Ith because vict,
this gives contradiction
was not added by #DF#

Running Time?
 # R a collection of requests, r = (s, t)
 EDF(R):
 sort R in ascending order of end time t
 curMax <- -infinity
 S <- empty collection
 for each request r = (s, t) in R do
 | if s > curMax then
 | | add r to S
 | | curMax <- t
 return S

& = total of reg.

I -Onlogn)>
- using, e.g.

merge

" OCll
sort

QCn log n).

Conclusion
1. Earliest deadline !rst strategy !nds a maximum feasible

collection of requests.
2. “Algorithm stays ahead” analysis establishes correctness
3. Running time of EDF is O(n log n)5 I

--

Next Time
Start dynamic programming!

