
Lecture 19: Minimum
Spanning Trees, Part 3

COSC 311 Algorithms, Fall 2022

20

i

Announcements
1. Masks still required in class
2. No class on Monday 10/24
3. HW 03, Question 1:

array contains (not in order)

values represented as bit numbers
4. HW 03 now due Sunday

n = 2B

0, 1, … , n − 1
B

-

i
a B - # ofbits

Last Time
Prim’s algorithm for Minimum Spanning Trees:

Grow a tree from an arbitrary seed vertex
Each step, add minimum weight edge out of tree

Cut Claim:

if an MST, a cut, min weight cut edge

then contains

Prim correctness follows from cut claim

T U, V − U e
T e

·Tot

1 1 1]

MSTs, Another Way
Prim:

Grow tree greedily from a single seed vertex
Maintain a (connected) tree

Edge Centric View:

Maintain a collection of edges (not necessarily a tree)
Add edges to collection to eventually build an MST

Questions:

How to prioritize edges?
How to determine whether or not to include an edge?

Picture

OX &osX

O
X I

Kruskal’s Algorithm
 Kruskal(V, E, w):
 C <- collection of components
 initially, each vertex is own component
 F <- empty collection
 # iterate in order of increasing weight
 for each edge e = (u, v) in E
 if u and v are in different components then
 add (u, v) to F
 merge components containing u and v
 endif
 endfor
 return F

&

&

>

--

⑱

Kruskal Illustration

X X

X
-

Kruskal Correctness I
Claim 1. Every edge added by Kruskal must be in every
MST.

Why?
V ⑧

Y
⑧

-"b-or
O ·

↓a--O&
I I

Kruskal Correctness I
Claim 1. Every edge added by Kruskal must be in every
MST.

Why?

Suppose added by Kruskal

Consider the cut where is ’s component

 is lightest edge across the cut (why?)

therefore must be in MST (why?)

e = (u, v)
U, V − U U u

e
e
↳) By cut claim

Kruskal Correctness II
Claim 2. Kruskal produces a spanning tree.

Why?

Kruskal Correctness II
Claim 2. Kruskal produces a spanning tree.

Why?

edges added by Kruskal do not contain cycles (why?)

edges added by Kruskal connect graph (why?)

&ever add edge that
creates a cycle

Only don't include an edge
f encepts are already

connected

Conclusion
Theorem. Kruskal’s algorithm produces an MST.

Next Question. How could we implement Kruskal’s
algorithm e!ciently? What is its running time?

Kruskal’s Algorithm
 Kruskal(V, E, w):
 C <- collection of components
 initially, each vertex is own component
 F <- empty collection
 # iterate in order of increasing weight
 for each edge e = (u, v) in E
 if u and v are in different components then
 add (u, v) to F
 merge components containing u and v
 endif
 endfor
 return F

S sorting;
01m log n)

A

>in OUl&

-x
Ocn)

Costly Operations
1. Get edges in order of increasing weight
2. Determine if and are in same component
3. Merge two components

u v

Costly Operations
1. Get edges in order of increasing weight
2. Determine if and are in same component
3. Merge two components

u v

Question. How to get edges in order of increasing weight?

s eg. Use BES to find all edges,
add to priority quere
↳ repeatedly remove min

to Alt: add edges to array-
and sort by weight I

Q(mlogn) -

Maintaining Components
Idea. For each component, designate a leader

leader is a vertex in its component
maintain an array that stores each vertex’s component’s
leader

leader[i] = v means that v is leader of i’s
component

Question. How to check if vertices i and j are in the same
component? Running time?

A

2 tilte1--
&It

Merging Components
Question. How to merge two components?

I

2

Otil⑮iz" I
A

#
#lite

Merging Components E!ciently?
For each leader, maintain list of vertices in its component.

I

1-2O#liteIre 2: 1, 2, 6
* append# ↑ :B,
5: 5

Time to merge a w/vi

&(size of smaller component).

Merging Components E!ciently?
For each leader, maintain list of vertices in its component.

To merge components with leaders and :

1. choose or to be leader of merged component
how?

2. if is new leader

for each vertex on ’s list

add to ’s list

set ’s leader to

Question. Running time?

u v
u v

u
x v

x u
x v

larger component

8) smaller comp size).

Merging Strategy
When merging components with leaders and , new
leader is leader of larger component

Claim. If is relabeled times, then ’s component has
size at least .

u v

x k x
2k

Consequence
Claim. If is relabeled times, then ’s component has
size at least .

Consequence 1. If ’s component has size , then was
relabeled at most times.

x k x
2k

x ℓ x
log ℓ

Consequence
Claim. If is relabeled times, then ’s component has
size at least .

Consequence 1. If ’s component has size , then was
relabeled at most times.

x k x
2k

x ℓ x
log ℓ

Consequence 2. Running time of all merge operations in
Kruskal is O(n log n)

Conclusion
Theorem. Kruskal’s algorithm can be implemented to run
in time in graphs with vertices and edges.O(m log n) n m

Conclusion
Theorem. Kruskal’s algorithm can be implemented to run
in time in graphs with vertices and edges.O(m log n) n m
Remark. More e!cient data structures for merging sets
exist

“Union-"nd” ADT, “disjoint-set forest” data structure
time to perform merges is

 is “inverse Ackerman function”

 grows so slowly, it is practically constant

O(nα(n))
α(n)
α(n)

Next Time
Interval Scheduling (recorded lecture)

