
Lecture 18: Minimum
Spanning Trees

COSC 311 Algorithms, Fall 2022

Announcements
1. Midterms

should !nish grading tomorrow
pick up in class Wednesday or OH on Thursday

2. No class on Monday 10/24
reading + recorded lecture instead

3. HW 03 Posted
,
due Friday

4. Masking Survey ←

Overview
1. Minimum Spanning Tree Problem
2. Prim’s Algorithm

Last Time: Dijkstra’s Algorithm
Single Source Shortest Paths

Input
graph

edge weights/lengths

starting vertex
Output

(weighted) distance for every vertex

G = (V , E)
w

u

d[v] = (u, v)dw v
-

Last Time: Dijkstra’s Algorithm
Single Source Shortest Paths

Input
graph

edge weights/lengths

starting vertex
Output

(weighted) distance for every vertex

G = (V , E)
w

u

d[v] = (u, v)dw v
Dijkstra’s Algorithm:

maintain set of !nalized nodes

greedily choose with minimum

!nalize

update for each neighbor of

S
v ∈ V − S d[v]

v
d[x] x v

Note : if all weights
are 1

, Dijkstra
is equiv,
to

BFS

DPW in Königsberg
Winter is coming to Königsberg!

Must prepare the bridges for ice
Each bridge has an associated cost to de-ice
Königsberg doesn’t have the budget to de-ice all bridges
For public safety, must ensure that all landmasses are
reachable from each other

Question. How to !nd the cheapest set of bridges to de-ice
that maintain connectivity?

Picture

?⃝
.

8
-

* ③ 9

☒
-

Graph Problem
Input:

a weighted graph with edge weights

Output:

a set of edges in such that

1. is connected

2. sum of weights of edges in is minimal among all
connected sub-graphs of

The graph is called a minimum spanning tree
of

G = (V , E) w

F E
(V , F)

F
G

T = (V , F)
G =

Example

Iago

Trees
Recall. A tree is a graph that:

1. is connected, and
2. contains no cycles

T

MST Problem
Input:

a weighted graph with edge weights

Output:

a set of edges in such that

1. is connected

2. sum of weights of edges in is minimal among all
connected sub-graphs of

Question. Why must be a tree?

G = (V , E) w

F E
(V , F)

F
G

T = (V , F)

o
- ao

E d
◦

no-0$

(c) T is connected

(2) If T has cycle, can
remove

edge from cycle w/out
disconnecting

T ⇒ better Solis

A Claim
Claim. Suppose is an MST for a weighted graph . Then

 is a tree.
T G

T

A Claim
Claim. Suppose is an MST for a weighted graph . Then

 is a tree.
T G

T
Proof. Argue by contradiction.

Suppose is not a tree

By de!nition of MST, is connected

So must contain a cycle

T
T

T C

A Claim
Claim. Suppose is an MST for a weighted graph . Then

 is a tree.
T G

T
Proof. Argue by contradiction.

Suppose is not a tree

By de!nition of MST, is connected

So must contain a cycle

T
T

T C
Removing any edge from results in a smaller
spanning “tree”

 was not minimal, a contradiction

e C

⟹ T

An Idea
Grow a tree outward from a seed vertex:

start with
repeat until we get a spanning tree:

pick a new edge to add to our tree

Question. How should we pick the “next” edge?

u

e

• Cheap

⑥

ⁿ±⇔ian+

Tree Growing Example

O
O

◦
O O

O
,

O

O O O

O
O

Exercise . Do we get same ans .

starting from vtx other than 7 ?

Question
What information do we need to maintain in order to
implement this procedure?

• set of vertices we've visited

• Weights of edges
↑

corresponding to
"

new
" neighbors

priority queue w/

priority = weight

Prim’s Algorithm
 PrimMST(V, E):
 initialize set S = {v} with v arbitrary
 initialize set F = {} of MST edges, priority queue Q
 for each neighbor x of v
 add (v, x) to Q with priority w(v, x)
 while Q is not empty
 (u, v) <- removeMin(Q)
 if S doesn't contain v
 add (u, v) to F
 for each neighbor x of v
 add (v, x) to Q with priority w(v, x)
 return (S, F)

-

=
-÷:::connected to rest

, add ✓ to s

Prim Illustration

Question
Why is graph returned by Prim a tree?

 PrimMST(V, E):
 initialize set S = {v} with v arbitrary
 initialize set F = {} of MST edges, priority queue Q
 for each neighbor x of v
 add (v, x) to Q with priority w(v, x)
 while Q is not empty
 (u, v) <- removeMin(Q)
 if S doesn't contain v
 add (u, v) to F
 for each neighbor x of v
 add (v, x) to Q with priority w(v, x)
 return (S, F)

When add Chief
-
/ v doesn't have

neighbors in F

t
Luis doesn't
create a cycle

Another Question
Why is graph returned by Prim a MST?

assume all edge weights are distinct

Another Question
Why is graph returned by Prim a MST?

assume all edge weights are distinct

Must show. Every edge added to is in an MST.F

Cuts in Graphs
De!nition. Let be a graph. A cut in is a
partition of into two (non-empty) subsets and .

G = (V , E) G
V U V − U

00
Cutedges are edges

that

"

cross
"

the cut i.e. w/
Tone end pt in U other inv -U

Cuts and MSTs
Cut Claim. Suppose:

 is a weighted graph (with distinct edge
weights)

 a cut in

 an MST

 is the minimum weight edge that crosses the
cut

 and

Then:

 contains the edge

G = (V , E)

U, V − U G
T = (V , F)
e = (u, v)

u ∈ U v ∈ V − U

T e

Consider : Why does cut claim

⇒ Prim give MST ?

Cut Claim Illustration

Prim, Again
 PrimMST(V, E):
 initialize set S = {v} with v arbitrary
 initialize set F = {} of MST edges, priority queue Q
 for each neighbor x of v
 add (v, x) to Q with priority w(v, x)
 while Q is not empty
 (u, v) <- removeMin(Q)
 if S doesn't contain v
 add (u, v) to F
 for each neighbor x of v
 add (v, x) to Q with priority w(v, x)
 return (S, F)

Prim Correctness I
Cut claim Prim produces an MST.

Why?

⟹

Prim Correctness I
Cut claim Prim produces an MST.

Why?

⟹

Consider th edge added by Prim

 contents of before edge added

What can we say about the cut ?

k ek

=Sk S
, V −Sk Sk

Prim Correctness II
First Conclusion. Every edge added by Prim’s algorithm
is in the MST.

Still to show. All MST edges are added.

Why is this so?

e

Prim Correctness II
First Conclusion. Every edge added by Prim’s algorithm
is in the MST.

Still to show. All MST edges are added.

Why is this so?

e

Su"ces to argue that Prim produces a spanning tree
Set of edges found by Prim form a tree
All vertices of are in tree (if is connected)

Conclusion. Prim’s algorithm produces an MST.

V G

Prim Running Time?
 PrimMST(V, E):
 initialize set S = {v} with v arbitrary
 initialize set F = {} of MST edges, priority queue Q
 for each neighbor x of v
 add (v, x) to Q with priority w(v, x)
 while Q is not empty
 (u, v) <- removeMin(Q)
 if S doesn't contain v
 add (u, v) to F
 for each neighbor x of v
 add (v, x) to Q with priority w(v, x)
 return (S, F)

Conclusion
Prim’s algorithm:

computes an MST in
if e"cient priority queue is used, running time is

Prim’s algorithm is greedy

to grow a tree, always add the lightest outgoing edge

G

O(m log n)

Next Time
Another greedy MST algorithm!

