Lecture 18: Minimum
Spanning Trees
COSC 311 Algorithms, Fall 2022

Announcements

1. Midterms
e should finish grading tomorrow
e pick up in class Wednesday or OH on Thursday

2. No class on Monday 10/24
e reading + recorded lecture instead

3. HW 03 Posted) due Fridmy
Y. MQS\E\V\% 5\A<ve,\/ —

Overview

1. Minimum Spanning Tree Problem
2. Prim’s Algorithm

Last Time: Dijkstra’s Algorithm

Single Source Shortest Paths
e Input

» graph G = (V,E)

» edge weights/lengths w

» starting vertex u
e Output

» (weighted) distance d[v] = d,,(u, v) for every vertex v

~

Last Time: Dijkstra’s Algorithm

Single Source Shortest Paths
e Input

» graph G = (V,E)

» edge weights/lengths w

» starting vertex u
e Output
» (weighted) distance d[v] = d,,(u, v) for every vertex v
Dijkstra’s Algorithm: Nde_ FLSA\ WQ\C&*\{\ (S
e maintain set S of finalized nodes 1% /L\ Dr) ‘,_g-((.gm
o greedily choose v € V — S with minimum d[v] S Q%W‘V‘
= finalize v To
» update d[x] for each neighbor x of v %C S

DPW in Konigsberg

Winter is coming to Kénigsberg!

e Must prepare the bridges for ice
e Each bridge has an associated cost to de-ice
e Konigsberg doesn’t have the budget to de-ice all bridges

e For public safety, must ensure that all landmasses are
reachable from each other

Question. How to find the cheapest set of bridges to de-ice
that maintain connectivity?

Picture

))(\ \\\\\
A . 3
D) (T,

Graph Problem

Input:

e a weighted graph G = (V, E) with edge weights w

Output:
e aset I of edges in E such that
1. (V,F)is connected

2. sum of weights of edges in F is minimal among all

connected sub-graphs of G

The graph T = (V, F) is called a
of G

&ninimum spanning t@

Example

Trees
Recall. A tree T’ is a graph that:

1. 1s connected, and
2. contains no cycles

MST Problem Q/) ;\)
Input: O‘\Q %
e a weighted graph G = (V, E) with edge weights w
Output:

e a set F' of edges in E such that

2 1. (V, F) is connected

1

=2. sum of weights of edges in F' is minimal among all
connected sub-graphs of G

b_uestion. Why must T = (V, F) be a tree?
— () T ¥ connechen

L (@D TIE T hos cyc

\ .
c ey
QCXC?*— Q—(tw"\ Q.x(c.&k. \’“’(Q&_“é ..Cig %‘3“\}5 Sb‘ﬁ

A Claim

Claim. Suppose T is an MST for a weighted graph G. Then
T 1s a tree.

A Claim

Claim. Suppose T is an MST for a weighted graph G. Then
T 1s a tree.

Proof. Argue by contradiction.

e Suppose 1 1s not a tree

e By definition of MST, T is connected
e So T' must contain a cycle C

A Claim

Claim. Suppose T is an MST for a weighted graph G. Then
T 1s a tree.

Proof. Argue by contradiction.

e Suppose 1 1s not a tree
e By definition of MST, T is connected
e So T' must contain a cycle C

e Removing any edge e from C results in a smaller
spanning “tree”

e —> T was not minimal, a contradiction

An Idea

Grow a tree outward from a seed vertex:

o start with u

e repeat until we get a spanning tree:
» pick a new edge e to add to our tree

Question. How should we pick the “next” edge?’

f\f\%a? dant
g . V\o—\—A{ CODNG &
2L — >

\ /b-O

70

Tree Growing Example

W@%@\/g@

NR

Eecoise- Do wa tf Sare. ONS.
%er*\“ﬁ Lom v

Question

What information do we need to maintain in order to
implement this procedure?

. sel ol vedhios wewe Visthed
¢ Wex \A(‘S OQ eé‘ S
t ,;f'

Cotde S?Omé&wa, }'D

7 TTAR y\ucd Wbocs

Ps((é('\"\(Q()\,UV\UL/ VJ{
(\)J'\oc(H = wiight

Prim’s Algorithm

PrimMST(V, E):
initialize set S {v} with v arbitrary
initialize set F {} of MST edges, priority queue Q
for each neighbor x of v
add (v, x) to Q with priority w(v, X)
) M e ————
while Q 1s not empty

(u, v) <- removeMin(Q)
— e —

if S doesn't contain v

add (u, v) to F
for each neighbor x of v

add (v, x) to Q with priority w(v, X)

return (S, F)

Prim Illustration

Question
Why is graph returned by Prim a tree?

PrimMST(V, E):
initialize set S {v} with v arbitrary
initialize set F {} of MST edges, priority queue Q

for each neighbor x of v

add (v, x) to Q with priority w(v, X)

while Q is not empty \}J\MN\ &&C(/ C.*,\)()/

u, v) <- removeMin (
(5,) = 77V Qdoesnt et

if S doesn't contain v g .
add (u, v) to F V\L(?(’\\DQU 1'AN ﬁ
for each neighbor x of v
add (v, x) to Q with priority w(v, X)

return (S, F)

L\'\I\D do > V(\
coeade 4oyl

Another Question
Why is graph returned by Prim a MST?

e assume all edge weights are distinct

Another Question
Why is graph returned by Prim a MST?

e assume all edge weights are distinct
Must show. Every edge added to F is in an MST.

Cuts in Graphs

Definition. Let G = (V, E) be a graph. Acutin G is.a
partition of V into two (non-empty) subsets U and V — U.

Cuts and MSTs

Cut Claim. Suppose:

e G = (V,E)is aweighted graph (with distinct edge
weights)

e U,V —-—Uacutin G
e T =(V,F)an MST

e ¢ = (u,v) is the minimum weight edge that crosses the
cut

s yece UandveV-U
Then:

e T contains the edge e

M VL does C,u{— ot
Lof :-3}[Pein Gque MNST 7

Cut Claim Illustration

Prim, Again

PrimMST(V, E):

initialize set S {v} with v arbitrary
initialize set F {} of MST edges, priority queue Q
for each neighbor x of v

add (v, x) to Q with priority w(v, X)
while Q is not empty

(u, v) <- removeMin(Q)

if S doesn't contain v

add (u, v) to F

for each neighbor x of v

add (v, x) to Q with priority w(v, X)

return (S, F)

Prim Correctness I

Cut claim = Prim produces an MST.
Why?

Prim Correctness I

Cut claim = Prim produces an MST.
Why?

Consider kth edge ¢; added by Prim

e §; = contents of § before edge added
What can we say about the cut S¢, V — §;?

Prim Correctness II

First Conclusion. Every edge ¢ added by Prim’s algorithm
is in the MST.

Still to show. All MST edges are added.
Why is this so?

Prim Correctness II

First Conclusion. Every edge ¢ added by Prim’s algorithm
is in the MST.

Still to show. All MST edges are added.
Why is this so?

e Suffices to argue that Prim produces a spanning tree
e Set of edges found by Prim form a tree

e All vertices of V are in tree (if G is connected)

Conclusion. Prim’s algorithm produces an MST.

Prim Running Time:

PrimMST(V, E):

initialize set S {v} with v arbitrary
initialize set F {} of MST edges, priority queue Q
for each neighbor x of v

add (v, x) to Q with priority w(v, X)
while Q is not empty

(u, v) <- removeMin(Q)

if S doesn't contain v

add (u, v) to F

for each neighbor x of v

add (v, x) to Q with priority w(v, X)

return (S, F)

Conclusion

Prim’s algorithm:

e computes an MST in G

e if efficient priority queue is used, running time is
O(mlogn)

Prim’s algorithm is greedy
e to grow a tree, always add the lightest outgoing edge

Next Time
Another greedy MST algorithm!

