Lecture 18: Minimum Spanning Trees COSC 311 *Algorithms*, Fall 2022

Announcements

- 1. Midterms
 - should finish grading tomorrow
 - pick up in class Wednesday or OH on Thursday
- 2. No class on Monday 10/24
 - reading + recorded lecture instead
- 3. HW 03 Posted, due Friday
- 4. Masking Survey E

Overview

- 1. Minimum Spanning Tree Problem
- 2. Prim's Algorithm

Last Time: Dijkstra's Algorithm

Single Source Shortest Paths

- Input
 - graph G = (V, E)
 - edge weights/lengths w
 - starting vertex u
- Output
 - (weighted) distance $d[v] = d_w(u, v)$ for every vertex v

Last Time: Dijkstra's Algorithm

Single Source Shortest Paths

- Input
 - graph G = (V, E)
 - edge weights/lengths w
 - starting vertex u
- Output
 - (weighted) distance $d[v] = d_w(u, v)$ for every vertex v

Dirkstea

is equili

ES

5

Dijkstra's Algorithm: Note: if all weights

- maintain set S of finalized nodes $\alpha_1 \alpha_1$
- greedily choose $v \in V S$ with minimum d[v]
 - finalize *v*
 - update *d*[*x*] for each neighbor *x* of *v*

DPW in Königsberg

Winter is coming to Königsberg!

- Must prepare the bridges for ice
- Each bridge has an associated cost to de-ice
- Königsberg doesn't have the budget to de-ice all bridges
- For public safety, must ensure that all landmasses are reachable from each other

Question. How to find the *cheapest* set of bridges to de-ice that maintain connectivity?

Picture

Graph Problem

Input:

• a weighted graph G = (V, E) with edge weights w

Output:

- a set F of edges in E such that
 - 1. (V, F) is connected
 - 2. sum of weights of edges in F is minimal among all connected sub-graphs of G

The graph T = (V, F) is called a **minimum spanning tree** of *G*

Example

Trees

Recall. A tree *T* is a graph that:

- 1. is connected, and
- 2. contains no cycles

MST Problem

Input:

- a weighted graph G = (V, E) with edge weights w
 Output:
- a set F of edges in E such that
- → 1. (V, F) is connected
 - \Im . sum of weights of edges in *F* is minimal among all connected sub-graphs of *G*

Question. Why must T = (V, F) be a tree? () T is connected

A Claim

Claim. Suppose T is an MST for a weighted graph G. Then T is a tree.

A Claim

Claim. Suppose *T* is an MST for a weighted graph *G*. Then *T* is a tree.

Proof. Argue by contradiction.

- Suppose *T* is not a tree
- By definition of MST, *T* is connected
- So T must contain a cycle C

A Claim

Claim. Suppose *T* is an MST for a weighted graph *G*. Then *T* is a tree.

Proof. Argue by contradiction.

- Suppose *T* is not a tree
- By definition of MST, *T* is connected
- So T must contain a cycle C
- Removing any edge *e* from *C* results in a smaller spanning "tree"
- \implies *T* was not minimal, a contradiction

An Idea

Grow a tree outward from a seed vertex:

- start with *u*
- repeat until we get a spanning tree:
 - pick a new edge *e* to add to our tree

Question. How should we pick the "next" edge?

Tree Growing Example

Question

What information do we need to maintain in order to implement this procedure?

Prim's Algorithm

```
PrimMST(V, E):
initialize set S = {v} with v arbitrary
initialize set F = {} of MST edges, priority queue Q
for each neighbor x of v
add (v, x) to Q with priority w(v, x)
while Q is not empty
(u, v) <- removeMin(Q)
if S doesn't contain v
add (u, v) to F cedd v to S
for each neighbor x of v
add (v, x) to Q with priority w(v, x)
return (S, F)
```

Prim Illustration

Question

Why is graph returned by Prim a tree?

Another Question

Why is graph returned by Prim a MST?

• assume all edge weights are distinct

Another Question

Why is graph returned by Prim a MST?

• assume all edge weights are distinct

Must show. Every edge added to F is in an MST.

Cuts in Graphs

Definition. Let G = (V, E) be a graph. A **cut** in G is a partition of V into two (non-empty) subsets U and V - U.

Cuts and MSTs

Cut Claim. Suppose:

- G = (V, E) is a weighted graph (with distinct edge weights)
- U, V U a cut in G
- T = (V, F) an MST
- *e* = (*u*, *v*) is the minimum weight edge that crosses the cut
 - $u \in U$ and $v \in V U$

Then:

• T contains the edge e

Consider: Why does cut claim => Prim give MST?

Cut Claim Illustration

Prim, Again

```
PrimMST(V, E):
```

```
initialize set S = {v} with v arbitrary
initialize set F = {} of MST edges, priority queue Q
for each neighbor x of v
  add (v, x) to Q with priority w(v, x)
while Q is not empty
  (u, v) <- removeMin(Q)
  if S doesn't contain v
    add (u, v) to F
    for each neighbor x of v
       add (v, x) to Q with priority w(v, x)
return (S, F)
```

Prim Correctness I

Cut claim \implies Prim produces an MST.

Why?

Prim Correctness I

Cut claim \implies Prim produces an MST.

Why?

Consider kth edge e_k added by Prim

• S_k = contents of *S* before edge added

What can we say about the cut S_k , $V - S_k$?

Prim Correctness II

First Conclusion. Every edge *e* added by Prim's algorithm is in the MST.

Still to show. All MST edges are added.

Why is this so?

Prim Correctness II

First Conclusion. Every edge *e* added by Prim's algorithm is in the MST.

Still to show. All MST edges are added.

Why is this so?

- Suffices to argue that Prim produces a spanning tree
- Set of edges found by Prim form a tree
- All vertices of *V* are in tree (if *G* is connected)

Conclusion. Prim's algorithm produces an MST.

Prim Running Time?

```
PrimMST(V, E):
```

```
initialize set S = {v} with v arbitrary
initialize set F = {} of MST edges, priority queue Q
for each neighbor x of v
  add (v, x) to Q with priority w(v, x)
while Q is not empty
  (u, v) <- removeMin(Q)
  if S doesn't contain v
    add (u, v) to F
    for each neighbor x of v
       add (v, x) to Q with priority w(v, x)
return (S, F)
```

Conclusion

Prim's algorithm:

- computes an MST in *G*
- if efficient priority queue is used, running time is $O(m \log n)$

Prim's algorithm is greedy

• to grow a tree, always add the lightest outgoing edge

Next Time

Another greedy MST algorithm!