
Lecture 17: Dijkstra and
Minimum Spanning Trees

COSC 311 Algorithms, Fall 2022



Overview
1. Dijkstra’s Algorithm Correctness
2. Implementing Dijkstra
3. Minimum Spanning Trees
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Input.

a weighted Graph , edge weights 

an initial vertex 

each vertex  has associated adjacency list

list of ’s neighbors

includes weight of edge from  to each neighbor

Output.

A map  such that  is the graph
distance from  to 

 indicates no path from  to 
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Dijkstra’s Algorithm
1. Initialize  and  for all 

2. Maintain set  of !nalized nodes, initially empty

3. Process nodes. While  do:

!nd node  in  with minimal 

add  to 

for each neighbor  of 

update 

d[u] = 0 d[v] = ∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))
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Correctness
1. Initialize  and  for all 

2. Maintain set  of !nalized nodes, initially empty

3. Process nodes: while 

!nd node  in  with minimal 

add  to 

for each neighbor  of 

update 

Claim. For every vertex ,  stores the correct
(weighted) distance .

d[u]←0 d[v]←∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))
v ∈ S d[v]

(u, v)dw
☐
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finalized



Proof of Claim
Claim. For every vertex ,  stores the correct
(weighted) distance .

Proof. Use induction on size of . Set  size of .

Base case . Only  is added to . Set , which is
correct answer.

v ∈ S d[v]
(u, v)dw

S k = S
k = 1 u S d[u]←01
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Inductive Step I
Inductive hypothesis. When  contains  elements,  is
correct for all vertices .

Consider next iteration of outer loop:

 has 

S k d[v]
v ∈ S

x d[x] = (d[v] + w(v, x))minv∈S

Claim
: this

dist is



Inductive Step II
Must show: ; argue by contradiction

1. suppose 

2. observe: there is a path from  to  of length 

3. 

4.  there is a path  from  to  of length 

d[x] = (u, x)dw

d[x] ≠ (u, x)dw
u x d[x]

⟹ (u, x) < d[x]dw
⟹ P u x ℓ < d[x]
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Shorter Path Illustration
/

leaves 5②
alternate path

✗

d[ ×] is minimal among nodes not in S

if is not in s so . . . DIY] ≥ dix]
⇒ other path has length ≥ dix]



Inductive Step III
Must show: ; argue by contradiction

1. suppose 

2. observe: there is a path from  to  of length 

3. 

4.  there is a path  from  to  of length 

5.  must leave  at some point 

6. by de!nition of , any path from  to  must be longer
than 

7. , which contradicts 

Conclusion. , as claimed.

d[x] = (u, x)dw

d[x] ≠ (u, x)dw
u x d[x]

⟹ (u, x) < d[x]dw
⟹ P u x ℓ < d[x]
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Dijkstra Running Time?
 has  vertices,  edges

Question. How many operations performed?

1. Initialize  and  for all 

2. Maintain set  of !nalized nodes, initially empty

3. Process nodes: while 

!nd node  in  with minimal 

add  to 

for each neighbor  of 

update 

G n m

d[u]←0 d[v]←∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))
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For Simplicity
Assume. Vertices are 

 is an array with  distance from  to 

 is a Boolean array with  if ’s distance
is !nalized
keep track of number of !nalized vertices

we’re done when  vertices are !nalized

1, 2, … , n
d d[v] = u v
final final[v] = true v

n
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Simple Implementation
For step

!nd node  in  with minimal 

use linear search

Question 1. What is running time of !nding min?

Question 2. What is overall running time of Dijkstra?
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Faster Implementation?
Since we need to access  with minimum , store non-
!nalized vertices in a priority queue

store elements with associated priorities
add element with given priority
remove element with smallest priority

v d[v]



Faster Implementation?
Since we need to access  with minimum , store non-
!nalized vertices in a priority queue

store elements with associated priorities
add element with given priority
remove element with smallest priority

v d[v]

Heap priority queue implementation

supports these operations with running time O(log n)
-



Faster Implementation?
Since we need to access  with minimum , store non-
!nalized vertices in a priority queue

store elements with associated priorities
add element with given priority
remove element with smallest priority

v d[v]

Heap priority queue implementation

supports these operations with running time O(log n)
For Dijkstra:

Store un-!nalized vertices in priority queue
priority of  is v d[v]



One Sublety, Two Solutions
Issue. Dijkstra decreases priority of vertices



One Sublety, Two Solutions
Issue. Dijkstra decreases priority of vertices

Solution 1. Store duplicate vertices with each new distance

will still !nd vertex  with smallest 
if !nalized vertex is returned, ignore it
requires priority queue of size  rather than 

v d[v]

m n



One Sublety, Two Solutions
Issue. Dijkstra decreases priority of vertices

Solution 1. Store duplicate vertices with each new distance

will still !nd vertex  with smallest 
if !nalized vertex is returned, ignore it
requires priority queue of size  rather than 

v d[v]

m n
Solution 2. Use more sophisticated priority queue that
supports “decrease priority” operation

can be implemented in  timeO(log n)D-



Conclusion
Dijkstra performs

 removals of vertices when they are !nalized

 distance updates

With e"cient priority queues, these operations can each
be performed in  time so…

Result. Dijkstra’s algorithm can be implemented to run in
time .
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