Lecture 17: Dijkstra and
Minimum Spanning Trees
COSC 311 Algorithms, Fall 2022



Overview

1. Dijkstra’s Algorithm Correctness
2. Implementing Dijkstra
3. Minimum Spanning Trees
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e a weighted Graph G = (V, E), edge weights w}
e an initial Vertex@gv\ k&\l L) 3

e each vertex v € V has associated adjacency list é‘(
3(\

= list of v's neighbors
» includes weight of edge from v to each nelghbor N\OQ

Output.
s Amapd : V — Rsuch that d[v] = d,,(u, ) is the graph

distance from u to v '[__ (Q\AC\S@\ og‘s
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» d[v] = oo indicates no path from u to v
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Dijkstra’s Alggrithm

1. Initialize d[u] = Oland d[v] = oo forall v # u & \\
2. Maintain set S of finalized nodes, initially empty Nov ™

. NITRY
3. Process nodes. ile)S # VY do: Q\M\;;A

e find node v in|V — S(with minimal d[v

. add v to S ot - Lol

e for each neighbor x of v
» update d[x]<« min(d|[x] ,Kd v] + w(v, x)
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Correctness

1. Initialize d[u]«0 and d[v]<«oo for all v # u

2. Maintain set S of finalized nodes, initially empty

3. Process nodes: while S # V
e find node v in V — § with minimal d[v]
e addvto S
e for each neighbor x of v (RJ\()\\:(:QA

» update d[x]< min(d[x], d[V] X
Claim. For every Vertexf v € Y, d[v] stores the correct

(weighted) distance d,,(u, V).




Proof of Claim

Claim. For every vertex v € §, d[v] stores the correct
(weighted) distance d,,(u, v).

Proof. Use induction on size of S. Segc, = size of §.

Base case k = 1. Only u is added to S. Set d[u]<0, which is
correct answer.



Inductive Step I

Inductive hypothesis. When § contains k elements, d[v] is
correct for all vertices v € .

Consider next iteration of outer loop:

e x has d[x] = min,c5(d[v] + w(v, X)) %\q\u\\\@




Inductive Step II

Must show: d[x] = d,,(u, x); argue by contradiction
1. suppose d[x] # d,,(u, x)
2. observe: there is a path from u to x of length d|[x
. @@m— lenta o s s& L
OWN- | \N
4. = Tthereis a path P from u to x of length z/” < d[x]
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Shorter Path Illustration
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Inductive Step III

Must show: d[x] = d,,(u, x); argue by contradiction

1. suppose d[x] # d,,(u, x)

2. observe: there is a path from u to x of length d[x]

3. = d,(u,x) < d[x] — —
4. = thereis a path P from u to x of length(Z < d[x
5.
6.

P must leave S at some point y wen- - dOK

by ﬁmt1on of x, ny path from u to y must be longe
than df

7. = w(P) > d[x], which ContradictE

Conclusion. d[x] = d,,(u, x), as claimed.




Dijkstra Running Time?

G has(zz}ertices,[nﬂedges

Question. How many operations performed?

1. Initialize d[u]<0 and d[v]«oo forall v # u

2. Maintain set S of finalized.nodes, initially empty
3. Process nodes: while S # V. , e S

F

i

e ffind node v in V — S with minimal d[vj, T r
eladdvto S 7 — = 3

e for each neighbor x of v c&w&\\l

—

ﬁru_g_date d[x]< min(ﬂ!:], B[v] + w(v, x)Zé 5/ ‘é gg(,}(}ﬂ\S
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For Simplicity
Assume. Vertices are 1,2, ... .n

e d is an array with d[v] = distance from u to v

e final is a Boolean array with final[v] = true 1f v’s distance
1s finalized

e keep track of number of finalized vertices
= we're done when n vertices are finalized
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Simple Implementation

For step

e find node v in V — § with minimal d[V]

use linear search & {ec Q\\ 'K\Q(\Jc\i c\a\c—é&‘:& ¢
e\,  ownd  {ekien yader Q(V,sf'

Question 1. What is running time of iinding min?  S\Wa

OHn)

Question 2. What is overall running time of Dijkstra?
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Faster Implementation?

Since we need to access v with minimum d[v], store non-
finalized vertices in a priority queue

e store elements with associated priorities
e add element with given priority
e remove element with smallest priority



Faster Implementation?

Since we need to access v with minimum d[v], store non-
finalized vertices in a priority queue

e store elements with associated priorities
e add element with given priority
e remove element with smallest priority

Heap priority queue implementation

e supports these operations with running time O(log n)




Faster Implementation?

Since we need to access v with minimum d[v], store non-
finalized vertices in a priority queue

e store elements with associated priorities
e add element with given priority
e remove element with smallest priority

Heap priority queue implementation
e supports these operations with running time O(log n)

For Dijkstra:

e Store un-finalized vertices in priority queue
e priority of vis d[V]



One Sublety, Two Solutions

Issue. Dijkstra decreases priority of vertices



One Sublety, Two Solutions

Issue. Dijkstra decreases priority of vertices
Solution 1. Store duplicate vertices with each new distance

e will still find vertex v with smallest d[V]
e if finalized vertex is returned, ignore it
e requires priority queue of size m rather than n



One Sublety, Two Solutions

Issue. Dijkstra decreases priority of vertices
Solution 1. Store duplicate vertices with each new distance

e will still find vertex v with smallest d[V]
e if finalized vertex is returned, ignore it
e requires priority queue of size m rather than n

Solution 2. Use e sophisticated priority queue that
supports Jdecrease priority’| operation

e can be implemented in O(log n) time
I




Conclusion

Dijkstra performs

e n removals of vertices when they are finalized
e 2m distance updates

With efficient priority queues, these operations can each
be performed in O(log n) time so...

Result. Dijkstra’s algorithm can be implemented to run in
time O(m log n).
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