
Lecture 17: Dijkstra and
Minimum Spanning Trees

COSC 311 Algorithms, Fall 2022

Overview
1. Dijkstra’s Algorithm Correctness
2. Implementing Dijkstra
3. Minimum Spanning Trees

Last Time: Weighted SSSP
Input.

a weighted Graph , edge weights

an initial vertex

each vertex has associated adjacency list

list of ’s neighbors

includes weight of edge from to each neighbor

Output.

A map such that is the graph
distance from to

 indicates no path from to

G = (V , E) w
u ∈ V

v ∈ V
v

v

d : V → R d[v] = (u, v)dw
u v

d[v] = ∞ u v

Single source
shortest
- paths

☐ wig)
length

of

hop

Eteuqth of
shortest

path from u for

Dijkstra’s Algorithm
1. Initialize and for all

2. Maintain set of !nalized nodes, initially empty

3. Process nodes. While do:

!nd node in with minimal

add to

for each neighbor of

update

d[u] = 0 d[v] = ∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))

starting vtx

not all

-☐- vert.finalized
un - finalized

☐
↓

yo
'"

tengu of path
from

u to ✗ that takesh⑥ Shortest path
to

DEV] u then hop @ ,
×)

Correctness
1. Initialize and for all

2. Maintain set of !nalized nodes, initially empty

3. Process nodes: while

!nd node in with minimal

add to

for each neighbor of

update

Claim. For every vertex , stores the correct
(weighted) distance .

d[u]←0 d[v]←∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))
v ∈ S d[v]

(u, v)dw
☐
_

finalized

Proof of Claim
Claim. For every vertex , stores the correct
(weighted) distance .

Proof. Use induction on size of . Set size of .

Base case . Only is added to . Set , which is
correct answer.

v ∈ S d[v]
(u, v)dw

S k = S
k = 1 u S d[u]←01

-

Inductive Step I
Inductive hypothesis. When contains elements, is
correct for all vertices .

Consider next iteration of outer loop:

 has

S k d[v]
v ∈ S

x d[x] = (d[v] + w(v, x))minv∈S

Claim
: this

dist is

Inductive Step II
Must show: ; argue by contradiction

1. suppose

2. observe: there is a path from to of length

3.

4. there is a path from to of length

d[x] = (u, x)dw

d[x] ≠ (u, x)dw
u x d[x]

⟹ (u, x) < d[x]dw
⟹ P u x ℓ < d[x]
☐
- length of shortest path

from u to ✗

DEV] + wcvix
)=d☒

u

ox \L
know there is path from
u to V of length d[u3

WIVES
⇒ path from u to ✗ of length

Shorter Path Illustration
/

leaves 5②
alternate path

✗

d[×] is minimal among nodes not in S

if is not in s so . . . DIY] ≥ dix]
⇒ other path has length ≥ dix]

Inductive Step III
Must show: ; argue by contradiction

1. suppose

2. observe: there is a path from to of length

3.

4. there is a path from to of length

5. must leave at some point

6. by de!nition of , any path from to must be longer
than

7. , which contradicts

Conclusion. , as claimed.

d[x] = (u, x)dw

d[x] ≠ (u, x)dw
u x d[x]

⟹ (u, x) < d[x]dw
⟹ P u x ℓ < d[x]

P S y
x u y

d[x]
⟹ w(P) ≥ d[x] 4

d[x] = (u, x)dw

f-
min . d[

☐
I

Dijkstra Running Time?
 has vertices, edges

Question. How many operations performed?

1. Initialize and for all

2. Maintain set of !nalized nodes, initially empty

3. Process nodes: while

!nd node in with minimal

add to

for each neighbor of

update

G n m

d[u]←0 d[v]←∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))

☐ ☐
_

-
-

ones

iterations1
n iterations Vi , V2 , V3 , - - i Vn

For Simplicity
Assume. Vertices are

 is an array with distance from to

 is a Boolean array with if ’s distance
is !nalized
keep track of number of !nalized vertices

we’re done when vertices are !nalized

1, 2, … , n
d d[v] = u v
final final[v] = true v

n

-

Simple Implementation
For step

!nd node in with minimal

use linear search

Question 1. What is running time of !nding min?

Question 2. What is overall running time of Dijkstra?

v V − S d[v]

n wert
, wedges

← read all non - finalized
elts

,
and return index

of
smallest

Oln)

01min21 = 01h2)

b/c m
< n2 all graphs on

a rest have

≤ ^¥' edges
[n
-

Faster Implementation?
Since we need to access with minimum , store non-
!nalized vertices in a priority queue

store elements with associated priorities
add element with given priority
remove element with smallest priority

v d[v]

Faster Implementation?
Since we need to access with minimum , store non-
!nalized vertices in a priority queue

store elements with associated priorities
add element with given priority
remove element with smallest priority

v d[v]

Heap priority queue implementation

supports these operations with running time O(log n)
-

Faster Implementation?
Since we need to access with minimum , store non-
!nalized vertices in a priority queue

store elements with associated priorities
add element with given priority
remove element with smallest priority

v d[v]

Heap priority queue implementation

supports these operations with running time O(log n)
For Dijkstra:

Store un-!nalized vertices in priority queue
priority of is v d[v]

One Sublety, Two Solutions
Issue. Dijkstra decreases priority of vertices

One Sublety, Two Solutions
Issue. Dijkstra decreases priority of vertices

Solution 1. Store duplicate vertices with each new distance

will still !nd vertex with smallest
if !nalized vertex is returned, ignore it
requires priority queue of size rather than

v d[v]

m n

One Sublety, Two Solutions
Issue. Dijkstra decreases priority of vertices

Solution 1. Store duplicate vertices with each new distance

will still !nd vertex with smallest
if !nalized vertex is returned, ignore it
requires priority queue of size rather than

v d[v]

m n
Solution 2. Use more sophisticated priority queue that
supports “decrease priority” operation

can be implemented in timeO(log n)D-

Conclusion
Dijkstra performs

 removals of vertices when they are !nalized

 distance updates

With e"cient priority queues, these operations can each
be performed in time so…

Result. Dijkstra’s algorithm can be implemented to run in
time .

n
2m

O(log n)

O(m log n)
-

better than n2 when

M
CC m2

