Lecture 17: Dijkstra and
Minimum Spanning Trees
COSC 311 Algorithms, Fall 2022

Overview

1. Dijkstra’s Algorithm Correctness
2. Implementing Dijkstra
3. Minimum Spanning Trees

Last Time: Weighted SSSP

Input. Sw\ L5

yaius
e a weighted Graph G = (V, E), edge weights w}
e an initial Vertex@gv\ k&\l L) 3

e each vertex v € V has associated adjacency list é‘(
3(\

= list of v's neighbors
» includes weight of edge from v to each nelghbor N\OQ

Output.
s Amapd : V — Rsuch that d[v] = d,,(u,) is the graph

distance from u to v '[__ (Q\AC\S@\ og‘s
oc(&ﬁk

SLUEN Q‘O‘M w o

» d[v] = oo indicates no path from u to v

S‘cu&ww? vk
Dijkstra’s Alggrithm

1. Initialize d[u] = Oland d[v] = oo forall v # u & \\
2. Maintain set S of finalized nodes, initially empty Nov ™

. NITRY
3. Process nodes. ile)S # VY do: Q\M\;;A

e find node v in|V — S(with minimal d[v

. add v to S ot - Lol

e for each neighbor x of v
» update d[x]<« min(d|[x] ,Kd v] + w(v, x)

) w K S(\‘\.asi SC"J&"’LD

Xo
O Sno(\eoX ?0‘%0\
NRA 4 e~ \nop Q‘ %)

‘/"*-/"\\“\d[-’(} - ,l
@r %é’@ [U\f\% Q} ?ok\v\ Tcom

Correctness

1. Initialize d[u]«0 and d[v]<«oo for all v # u

2. Maintain set S of finalized nodes, initially empty

3. Process nodes: while S # V
e find node v in V — § with minimal d[v]
e addvto S
e for each neighbor x of v (RJ\()\\:(:QA

» update d[x]< min(d[x], d[V] X
Claim. For every Vertexf v € Y, d[v] stores the correct

(weighted) distance d,,(u, V).

Proof of Claim

Claim. For every vertex v € §, d[v] stores the correct
(weighted) distance d,,(u, v).

Proof. Use induction on size of S. Segc, = size of §.

Base case k = 1. Only u is added to S. Set d[u]<0, which is
correct answer.

Inductive Step I

Inductive hypothesis. When § contains k elements, d[v] is
correct for all vertices v € .

Consider next iteration of outer loop:

e x has d[x] = min,c5(d[v] + w(v, X)) %\q\u\\\@

Inductive Step II

Must show: d[x] = d,,(u, x); argue by contradiction
1. suppose d[x] # d,,(u, x)
2. observe: there is a path from u to x of length d|[x
. @@m— lenta o s s& L
OWN- | \N
4. = Tthereis a path P from u to x of length z/” < d[x]

B ERNN %) * - 40

Shorter Path Illustration

dCﬁj ‘\"> Wnwed O wodes nobt e S

Uy \S WK WM S se.. A= GRS
=) okl Dakm ss o > &CxD

Inductive Step III

Must show: d[x] = d,,(u, x); argue by contradiction

1. suppose d[x] # d,,(u, x)

2. observe: there is a path from u to x of length d[x]

3. = d,(u,x) < d[x] — —
4. = thereis a path P from u to x of length(Z < d[x
5.
6.

P must leave S at some point y wen- - dOK

by ﬁmt1on of x, ny path from u to y must be longe
than df

7. = w(P) > d[x], which ContradictE

Conclusion. d[x] = d,,(u, x), as claimed.

Dijkstra Running Time?

G has(zz}ertices,[nﬂedges

Question. How many operations performed?

1. Initialize d[u]<0 and d[v]«oo forall v # u

2. Maintain set S of finalized.nodes, initially empty
3. Process nodes: while S # V. , e S

F

i

e ffind node v in V — S with minimal d[vj, T r
eladdvto S 7 — = 3

e for each neighbor x of v c&w&\\l

—

ﬁru_g_date d[x]< min(ﬂ!:], B[v] + w(v, x)Zé 5/ ‘é gg(,}(}ﬂ\S

- Qo) ¥ daglu) e v deglin) '-j'lmg-
<

L '\ .‘MQJT‘\OV\S V\,\IL)‘V';)-—-)\IV\

For Simplicity
Assume. Vertices are 1,2,n

e d is an array with d[v] = distance from u to v

e final is a Boolean array with final[v] = true 1f v’s distance
1s finalized

e keep track of number of finalized vertices
= we're done when n vertices are finalized

(\N uQ('Sr) W\u&a{(/s

Simple Implementation

For step

e find node v in V — § with minimal d[V]

use linear search & {ec Q\\ 'K\Q(\Jc\i c\a\c—é&‘:& ¢
e\, ownd {ekien yader Q(V,sf'

Question 1. What is running time of iinding min? S\Wa

OHn)

Question 2. What is overall running time of Dijkstra?

() (wmk \f\L\ = @(“ﬂ

2 W\ (ophs o
\O/C_ PR |\ dil «Q)C?Sc P\AQ\SL

e nNel) ofaes
L (.\r\"ct{L

-—

Faster Implementation?

Since we need to access v with minimum d[v], store non-
finalized vertices in a priority queue

e store elements with associated priorities
e add element with given priority
e remove element with smallest priority

Faster Implementation?

Since we need to access v with minimum d[v], store non-
finalized vertices in a priority queue

e store elements with associated priorities
e add element with given priority
e remove element with smallest priority

Heap priority queue implementation

e supports these operations with running time O(log n)

Faster Implementation?

Since we need to access v with minimum d[v], store non-
finalized vertices in a priority queue

e store elements with associated priorities
e add element with given priority
e remove element with smallest priority

Heap priority queue implementation
e supports these operations with running time O(log n)

For Dijkstra:

e Store un-finalized vertices in priority queue
e priority of vis d[V]

One Sublety, Two Solutions

Issue. Dijkstra decreases priority of vertices

One Sublety, Two Solutions

Issue. Dijkstra decreases priority of vertices
Solution 1. Store duplicate vertices with each new distance

e will still find vertex v with smallest d[V]
e if finalized vertex is returned, ignore it
e requires priority queue of size m rather than n

One Sublety, Two Solutions

Issue. Dijkstra decreases priority of vertices
Solution 1. Store duplicate vertices with each new distance

e will still find vertex v with smallest d[V]
e if finalized vertex is returned, ignore it
e requires priority queue of size m rather than n

Solution 2. Use e sophisticated priority queue that
supports Jdecrease priority’| operation

e can be implemented in O(log n) time
I

Conclusion

Dijkstra performs

e n removals of vertices when they are finalized
e 2m distance updates

With efficient priority queues, these operations can each
be performed in O(log n) time so...

Result. Dijkstra’s algorithm can be implemented to run in
time O(m log n).

hefler Thasn N w e

©L
W FE WM

