Lecture 16: Dijkstra's Algorithm

COSC 311 Algorithms, Fall 2022

Overview

- 1. Recap of **P**FS
- 2. Weighted Graphs
- 3. Weighted Shortest Paths
- 4. Dijkstra's Algorithm

Last Time vertices also nodes

Unweighted Single-Source Shortest Paths:

- Given graph G = (V, E) and starting vertex u
- Find for every vertex *v*, the distance d(u, v)
 - d(u, v) =length of shortest path from *u* to *v*
 - shortest = fewest hops

Last Time

Unweighted Single-Source Shortest Paths:

- Given graph G = (V, E) and starting vertex u
- Find for every vertex *v*, the distance d(u, v)
 - d(u, v) =length of shortest path from *u* to *v*
 - shortest = fewest hops

Solution: Breadth-first Search (BFS)

• Process vertices in increasing order of distance from *u*

BFS Pseudocode

Correctness. Follows from interaction with queue: vertices added in order of increasing distance from *u*

• \implies distance is correct when vertex added

BFS Phases

M= # edges in G n = # vertices **BFS Running Time?** ishow run of der BFS(V, E, u): O(n)of intialize d[v] <- -1 for all v Q take O(1) **√**d[u] <- 0 * 🖌 queue.add(u) while queue is not empty do 2m 💃 v <- queue.remove() Lyn-1 inner for each neighbor w of v do (Y(u²) f[d[w] = -1 then iterations d[w] < - d[v] + 1WIN W queue.add(w) return d L-I iteration per vertex for vertex V, inner loop iterates over neighbors => degles iterations : O(deg(v.) + deg(v2) + ... + deg(vn)) 2 1

More General Problem

Definition. A weighted graph is a graph G(V, E) where each edge $e \in E$ is additionally assigned a (real valued) weight w(e).

• for now, assume $w(e) \ge 0$

More General Problem

Definition. A weighted graph is a graph G(V, E) where each edge $e \in E$ is additionally assigned a (real valued) weight w(e).

• for now, assume $w(e) \ge 0$

Examples.

- weights = distances (not just number of hops)
- weights = cost of connection
- weights = latency of connection

• .

Distance in Weighted Graphs

- G = (V, E) a graph, w weights
- $P = v_0 e_1 v_1 e_2 v_2 \cdots e_k v_k$ a path
- The (weighted) length of P is

 $w(P) = w(e_1) + w(e_2) + \dots + w(e_k)$

Weighted Shortest Paths

Given weights w, define $d_w(u, v)$ to be minimum (weighted) length of any path P from u to v.

Example

What is $d_w(1, 3)$? What about $d_w(1, 5)$?

Weighted SSSP = Single Source Shortest Path

Input.

- a weighted Graph G = (V, E), edge weights w
- an initial vertex $u \in V$
- each vertex $v \in V$ has associated **adjacency list**
 - list of v's neighbors
 - includes weight of edge from v to each neighbor

Output.

- A map $d : V \rightarrow \mathbf{R}$ such that $d[v] = d_w(u, v)$ is the graph distance from *u* to *v*
 - $d[v] = \infty$ indicates no path from *u* to *v*

Weighted SSSP

Does BFS compute *weighted* distances from *u*?

- must update procedure
- when processing edge (v, x), should update $d[x] \leftarrow d[v] + w(v, x)$ rather than setting $d[x] \leftarrow d[v] + 1$

Does this work?

Issue

- BFS processes vertices in order of fewest hops from *u*
- With weighted graphs, shortest path need not have fewest hops

BFS Analysis Takeaway

- BFS succeeds on unweighted graphs because closer vertices are processed before farther vertices
- Could we get similar behavior for weighted distances?

BFS Analysis Takeaway

- BFS succeeds on unweighted graphs because closer vertices are processed before farther vertices
- Could we get similar behavior for weighted distances?
 - must ensure: vertices processed in order of *weighted distance* from *u*
 - how can we do this?

BFS Analysis Takeaway

- BFS succeeds on unweighted graphs because closer vertices are processed before farther vertices
- Could we get similar behavior for weighted distances?
 - must ensure: vertices processed in order of *weighted distance* from *u*
 - how can we do this?
- How could we efficiently implement a modified procedure?

Dijkstra's Algorithm

Idea. Process elements in order of weighted distance from *u*

- Maintain set *S* of nodes whose distances from *u* is known
- Find element $x \in V S$ that is closest to u and add it to S $\sqrt[n]{\chi}$ in $\sqrt[n]{V}$ but not S

of min from v ending (V, X)

d[v?: dist from u to v Dijkstra's Algorithm in Detail

- 1. Initialize d[u] = 0 and $d[v] = \infty$ for all $v \neq u$
- 2. Maintain set S of *finalized* nodes, initially empty some nodes not
- 3. Process nodes. While $S \neq V$ do:
 - find node v in V S with minimal d[v]
 - add v to S
 - for each neighbor x of v
 - update $d[x] \leftarrow \min(d[x], d[v] + w(v, x))$

prev estimate of distance

Dijkstra Illustration

V	1	2	3	4	5	6	7	8	9
d[v]	0	•	•	•	•	•	•	•	•

V	1	2	3	4	5	6	7	8	9
d[v]	0	•	•	•	•	•	•	•	•

V	1	2	3	4	5	6	7	8	9
d[v]	0	•	•	•	•	•	3	2	•

V	1	2	3	4	5	6	7	8	9
d[v]	Θ	•	•	•	•	•	3	2	•

V	1	2	3	4	5	6	7	8	9
d[v]	0	•	6	•	•	•	3	2	3

						-			
V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	7	•	4	3	2	3

V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	•	4	3	2	3

						-			
V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	•	4	3	2	3

.

V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	5	4	3	2	3

V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	5	4	3	2	3

V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	5	4	3	2	3

V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	5	4	3	2	3

V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	5	4	3	2	3

V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	5	4	3	2	3

V	1	2	3	4	5	6	7	8	9
d[v]	0	6	4	6	5	4	3	2	3

Correctness

- 1. Initialize $d[u] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \neq u$
- 2. Maintain set *S* of *finalized* nodes, initially empty
- 3. Process nodes: while $S \neq V$
 - find node v in V S with minimal d[v]
 - add v to S
 - for each neighbor *x* of *v*
 - update $d[x] \leftarrow \min(d[x], d[v] + w(v, x))$

Claim. For every vertex $v \in S$, d[v] stores the correct (weighted) distance $d_w(u, v)$.

Proof of Claim

Claim. For every vertex $v \in S$, d[v] stores the correct (weighted) distance $d_w(u, v)$.

Proof. Use induction on size of *S*. Set k = size of *S*.

Base case k = 1. Only *u* is added to *S*. Set $d[u] \leftarrow 0$, which is correct answer.

Inductive Step I

Inductive hypothesis. When S contains k elements, d[v] is correct for all vertices $v \in S$.

Consider next iteration of outer loop:

• $x has d[x] = \min_{v \in S} (d[v] + w(v, x))$

Inductive Step II

Must show: $d[x] = d_w(u, x)$; argue by *contradiction*

- 1. suppose $d[x] \neq d_w(u, x)$
- 2. observe: there is a path from u to x of length d[x]
- 3. $\implies d_w(u, x) < d[x]$
- 4. \implies there is a path *P* from *u* to *x* of length $\ell < d[x]$

Shorter Path Illustration

Inductive Step III

Must show: $d[x] = d_w(u, x)$; argue by *contradiction*

- 1. suppose $d[x] \neq d_w(u, x)$
- 2. observe: there is a path from u to x of length d[x]

3.
$$\implies d_w(u, x) < d[x]$$

- 4. \implies there is a path *P* from *u* to *x* of length $\ell < d[x]$
- 5. *P* must leave *S* at some point *y*
- 6. by definition of *x*, any path from *u* to *y* must be longer than d[x]
- 7. $\implies w(P) \ge d[x]$, which contradicts 4

Conclusion. $d[x] = d_w(u, x)$, as claimed.

Next Time

- 1. Implementing Dijkstra's algorithm
 - how do we find *x* with minimum *d*[*x*] *efficiently*?
 - review heaps/priority queues
- 2. Minimum spanning tree problem