
Lecture 15: Graphs and
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COSC 311 Algorithms, Fall 2022



Overview
1. Single Source Shortest Paths
2. Depth First Search
3. Weighted Graphs
4. Weighted Shortest Paths

c-



More Bridges
Gephyrophobia = fear of bridges

Question. How to get from one landmass to another,
crossing the fewest possible number of bridges?



Strategy
Find shortest (fewest hops) route by:

1. !nd all vertices reachable in 1 hop
2. !nd all vertices reachable in 2 hops
3. !nd all vertices reachable in 3 hops
4. …

Continue until destination is found



Illustration



Graph Distances
De!nition.  a graph,  vertices. The
graph distance between  and , denoted , is the
length of the shortest path from  to  in .

G = (V , E) u, v ∈ V
u v d(u, v)

u v G

vertices

edges

-

_



Example

What is ? What is ?d(1, 3) d(1, 5)

→

☒



Single Source Shortest Paths (SSSP)
Unweighted version

Input.

a Graph 

an initial vertex 

each vertex  has associated adjacency list

list of ’s neighbors

Output.

A map  such that 
is the graph distance from  to 

 indicates no path from  to 

G = (V , E)
u ∈ V

v ∈ V
v

: V → {−1, 0, 1, 2, …}du (v) = d(u, v)du
u v

d[v] = −1 u v

I l

-

o

vertex

,

# ¥-0
dist .

from U

-

←

→ sentinel value



Example
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BFS Solution
Breadth-First Search

1. start at 

2. examine ’s neighbors, at distance 

3. examine ’s neighbors’ neighbors, at distance 

4. 

Greedily examine closest vertices that have not yet been
examined…

u
u 1
u 2

⋮

=
.



Queues
Abstract data type (ADT)

stores elements
two basic operations

add(x) adds element x to queue
remove() removes and returns element

FIFO: !rst in, !rst out

moral = order of
addition



BFS Pseudocode
  BFS(V, E, u):
    intialize d[v] <- -1 for all v
    d[u] <- 0
    queue.add(u)
    while queue is not empty do
      v <- queue.remove()
      for each neighbor w of v do
        if d[w] = -1 then
          d[w] <- d[v] + 1
          queue.add(w)
    return d

vertices
→ Get adj

. list of each
vtx

.

Edges
of graph

[

- starting vertex
dtv] = -1 means

]← haven't seen

t '
]

v yet

/ g-
V 's neighbors

- true if haven't
seen

w before
i - -



BFS Illustration
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BFS Correctness
Theorem. When BFS(V, E, u) terminates, for every
vertex ,  stores the distance (minimum number
of hops) from  to .

v ∈ V d[v]
u vI -



BFS Correctness
Theorem. When BFS(V, E, u) terminates, for every
vertex ,  stores the distance (minimum number
of hops) from  to .

v ∈ V d[v]
u v

Analysis. Break  into layers

 contains only 

 contains neighbors of 

 contains neighbors of neighbors of 

 contains vertices not in  but with at least
one neighbor in 

V
L0 u
L1 u
L2 u
⋮
Lk , … ,L0 Lk−1

Lk−1

→
.

→

I
_

-



Layered Illustration
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More Formally
For , De!ne  by

 vertices not in  that have at least one
neighbor in 

i = 0, 1, 2, … Li

= {u}L0
=Li , , … ,L0 L1 Li−1

Li−1



More Formally
For , De!ne  by

 vertices not in  that have at least one
neighbor in 

i = 0, 1, 2, … Li

= {u}L0
=Li , , … ,L0 L1 Li−1

Li−1

Claim.  contains precisely the vertices in  at distance 
from .

Li V i
u

Prove by induction on i



Analysis of BFS
To Show

1. procedure !nds vertices in increasing order of distance
2. distances are correctly computed when vertex is found

(added to queue)

Idea. Break execution of BFS into phases

phase  starts when !rst element of  is added to queue

phase  ends when last element in  is added to queue

i Li
i Li
-

I



Phase Illustration a) distance

(2) taxers

⑧⑧ (3) Phaies

¥.



Phase Claim
Claim. Consider an execution of BFS procedure. Then for
every phase :

1. phase  ends before phase  begins

2. every vertex from  is added to the queue in phase 

3. each vertex  added in phase  has 

i
i i + 1

Li i
v i d[v] = i

-

all elts in Li

added to queue•

be for any inlet/
[

nothing•

# from Li
is missed

• if u in Li then

div] = i
-

• Previous chain was that if alg
✓ in Li then dcusu) - i ⇒ is

correct



Phase Claim
Claim. Consider an execution of BFS procedure. Then for
every phase :

1. phase  ends before phase  begins

2. every vertex from  is added to the queue in phase 

3. each vertex  added in phase  has 

i
i i + 1

Li i
v i d[v] = i

Proof. Use induction on 

Base case .  is the only element in , and it is added
before any other elements, and  is initialized to .

i
i = 0 u L0

d[u] 0

'

-

.



Inductive Step of Phase Claim
Suppose claim holds for  (inductive hypothesis).
Then:

when phase  ends (1) all vertices from  are in queue
and (2) no vertex in  is in queue

start removing elements in  from queue

when  in  is removed, any neighbors in  are
added to queue (if not already)
distance is set to 

every  in  has neighbor in 

 all  are added to queue when last 
vertex is removed from queue

no vertex in  added to queue to this point

j ≤ i

i Li
Li+1

Li
v Li Li+1

d[v] ← i + 1
v Li+1 Li

⟹ v ∈ Li+1 Li

Li+2

-

TO show :

claim holds
for it I

[ ]

-

-

-

- w
-

I -w _← *>+ \
uyp .

↑
_- I by incl .

-

⇒ claimholds for phase i.



Conclusion

BFS procedure correctly computes all distances from !

  BFS(V, E, u):
    intialize d[v] <- -1 for all v
    d[u] <- 0
    queue.add(u)
    while queue is not empty do
      v <- queue.remove()
      for each neighbor w of v do
        if d[w] = -1 then
          d[w] <- d[v] + 1
          queue.add(w)
    return d

u



What is Running Time of BFS?
  BFS(V, E, u):
    intialize d[v] <- -1 for all v
    d[u] <- 0
    queue.add(u)
    while queue is not empty do
      v <- queue.remove()
      for each neighbor w of v do
        if d[w] = -1 then
          d[w] <- d[v] + 1
          queue.add(w)
    return d

G : has n_ vertices, m edgiest /
-Ocmtn )

-

am

i.← ④ Cni /
-

FI

HE
④t is running time of add/remove
for queue ? Oct )

← true for array/
linked list

each vtx added to implementations
queue at most once



→ 01mn) - Ocmtn )

consider removing I from queue
→ examine neighbors

OCD work per neighbor
→ Ocdegcv))
t

≤ n

Total work : V
, V2 ,

- - -

,
Vu

Ocdegcui ) ) + O( degcu.at )t . . .tO( deglvnl )

=0CdeÉm_E )


