## Lecture 15: Graphs and Distances

COSC 311 Algorithms, Fall 2022

#### Overview

- 1. Single Source Shortest Paths
- 2. Depth First Search 🧲
- 3. Weighted Graphs
- 4. Weighted Shortest Paths

## More Bridges Gephyrophobia = fear of bridges Ð

Question. How to get from one landmass to another, crossing the fewest possible number of bridges?

#### Strategy

Find shortest (fewest hops) route by:

- 1. find all vertices reachable in 1 hop
- 2. find all vertices reachable in 2 hops
- find all vertices reachable in 3 hops
   ...

Continue until destination is found

#### Illustration



# Graph Distances edge)

**Definition**. G = (V, E) a graph,  $u, v \in V$  vertices. The **graph distance** between u and v, denoted d(u, v), is the length of the shortest path from u to v in G.

#### Example



## Single Source Shortest Paths (SSSP)

Unweighted version

Input.

- a Graph G = (V, E)
- an initial vertex  $u \in V$
- each vertex  $v \in V$  has associated **adjacency list** ach verten
  list of v's neighbors
  letex dEVJ = V's dist-toom u

Output.

• A map  $d_u : V \to \{-1, 0, 1, 2, ...\}$  such that  $d_u(v) = d(u, v)$ is the graph distance from u to v

• 
$$d[v] = -1$$
 indicates no path from  $u$  to  $v$   
sentine Value





1 2 3 4 5 6 7 8 vort dist 0322331

#### **BFS Solution**

Breadth-First Search

- 1. start at *u*
- 2. examine <u>u's</u> neighbors, at distance 1
- 3. examine *u*'s neighbors' neighbors, at distance 2

4. :

Greedily examine closest vertices that have not yet been examined...

## Queues

Abstract data type (ADT)

- stores elements
- two basic operations
  - add(x) adds element x to queue
  - remove() removes and returns element
- FIFO: first in, first out



#### **BFS** Illustration







| V    | 1 | 2   | 3   | 4   | 5  | 6   | 7  | 8  | 9  |
|------|---|-----|-----|-----|----|-----|----|----|----|
| d[v] | 0 | - 1 | - 1 | - 1 | -1 | - 1 | -1 | -1 | -1 |





| V    | 1 | 2   | 3   | 4   | 5  | 6   | 7   | 8  | 9   |
|------|---|-----|-----|-----|----|-----|-----|----|-----|
| d[v] | 0 | - 1 | - 1 | - 1 | -1 | - 1 | - 1 | -1 | - 1 |







cur

queue 7 8

| V    | 1 | 2  | 3   | 4   | 5  | 6   | 7 | 8 | 9   |
|------|---|----|-----|-----|----|-----|---|---|-----|
| d[v] | 0 | -1 | - 1 | - 1 | -1 | - 1 | 1 | 1 | - 1 |







queue 8 3 4

| V    | 1 | 2  | 3 | 4 | 5  | 6   | 7 | 8 | 9  |
|------|---|----|---|---|----|-----|---|---|----|
| d[v] | 0 | -1 | 2 | 2 | -1 | - 1 | 1 | 1 | -1 |

|      |   | _  | _ | _ | _  | _   | _ | _ | _  |
|------|---|----|---|---|----|-----|---|---|----|
| V    | 1 | 2  | 3 | 4 | 5  | 6   | 7 | 8 | 9  |
| d[v] | 0 | -1 | 2 | 2 | -1 | - 1 | 1 | 1 | -1 |

queue 8 3 4







| queue 3 4 |
|-----------|
|-----------|

|        |   |    | 5 | Т | 5   | 0   | / | 0 | 9  |
|--------|---|----|---|---|-----|-----|---|---|----|
| d[v] 0 | - | -1 | 2 | 2 | - 1 | - 1 | 1 | 1 | -1 |





queue 3 4 9

| V    | 1 | 2  | 3 | 4 | 5   | 6   | 7 | 8 | 9 |
|------|---|----|---|---|-----|-----|---|---|---|
| d[v] | 0 | -1 | 2 | 2 | - 1 | - 1 | 1 | 1 | 2 |

| V    | 1 | 2   | 3 | 4 | 5   | 6   | 7 | 8 | 9 |
|------|---|-----|---|---|-----|-----|---|---|---|
| d[v] | 0 | - 1 | 2 | 2 | - 1 | - 1 | 1 | 1 | 2 |

| queue | 3 | 4 | 9 |
|-------|---|---|---|
|-------|---|---|---|









| V    | 1 | 2  | 3 | 4 | 5   | 6   | 7 | 8 | 9 |
|------|---|----|---|---|-----|-----|---|---|---|
| d[v] | 0 | -1 | 2 | 2 | - 1 | - 1 | 1 | 1 | 2 |

| V    | 1 | 2   | 3 | 4 | 5   | 6   | 7 | 8 | 9 |
|------|---|-----|---|---|-----|-----|---|---|---|
| d[v] | 0 | - 1 | 2 | 2 | - 1 | - 1 | 1 | 1 | 2 |

queue 4 9









| V    | 1 | 2  | 3 | 4 | 5  | 6   | 7 | 8 | 9 |
|------|---|----|---|---|----|-----|---|---|---|
| d[v] | 0 | -1 | 2 | 2 | -1 | - 1 | 1 | 1 | 2 |

|       |   | 8 |   |   | 9 |     |   | 6 |   |
|-------|---|---|---|---|---|-----|---|---|---|
| cur   | 4 |   |   |   |   |     |   |   |   |
| queue | 9 | 2 | 5 |   |   |     |   |   |   |
| V     | 1 | 2 | 3 | 4 | 5 | 6   | 7 | 8 | 9 |
| d[v]  | 0 | 3 | 2 | 2 | 3 | - 1 | 1 | 1 | 2 |
|       |   |   |   |   |   |     |   |   |   |

| V    | 1 | 2 | 3 | 4 | 5 | 6   | 7 | 8 | 9 |
|------|---|---|---|---|---|-----|---|---|---|
| d[v] | 0 | 3 | 2 | 2 | 3 | - 1 | 1 | 1 | 2 |

queue 9 2 5



|       |   | 8 | 3 |   | 9 | 2   |   | 6 |   |
|-------|---|---|---|---|---|-----|---|---|---|
| cur   | 9 |   |   |   |   |     |   |   |   |
| queue | 2 | 5 |   |   |   |     |   |   |   |
| V     | 1 | 2 | 3 | 4 | 5 | 6   | 7 | 8 | 9 |
| d[v]  | 0 | 3 | 2 | 2 | 3 | - 1 | 1 | 1 | 2 |
|       |   |   |   |   |   |     |   |   |   |

|       |   |   |   | _ |   |   |   |   |   |
|-------|---|---|---|---|---|---|---|---|---|
| queue | 2 | 5 | 6 |   |   |   |   |   |   |
|       |   |   |   |   |   |   |   |   |   |
| V     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | C |
| d[v]  | 0 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 2 |





| V    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------|---|---|---|---|---|---|---|---|---|
| d[v] | 0 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 2 |





| V    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------|---|---|---|---|---|---|---|---|---|
| d[v] | 0 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 2 |







| V    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------|---|---|---|---|---|---|---|---|---|
| d[v] | 0 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 2 |

queue 5 6

















| V    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------|---|---|---|---|---|---|---|---|---|
| d[v] | 0 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 2 |

queue







#### **BFS Correctness**

Theorem. When BFS(V, E, u) terminates, for every vertex  $v \in V$ ,  $\underline{d[v]}$  stores the distance (minimum number of hops) from u to v.

#### **BFS Correctness**

- **Theorem.** When BFS(V, E, u) terminates, for every vertex  $v \in V$ , d[v] stores the distance (minimum number of hops) from u to v.
- Analysis. Break V into layers
- $\rightarrow L_0$  contains only u
- $\rightarrow L_1$  contains neighbors of u
- $\rightarrow$  L<sub>2</sub> contains neighbors of neighbors of *u*

 $<sup>\</sup>rightarrow L_k$  contains vertices not in  $L_0, \ldots, L_{k-1}$  but with at least one neighbor in  $L_{k-1}$ 

#### Layered Illustration



## More Formally

For  $i = 0, 1, 2, ..., Define L_i$  by

- $L_0 = \{u\}$
- $L_i$  = vertices not in  $L_0, L_1, ..., L_{i-1}$  that have at least one neighbor in  $L_{i-1}$

## More Formally

For  $i = 0, 1, 2, ..., Define L_i$  by

- $L_0 = \{u\}$
- $L_i$  = vertices not in  $L_0, L_1, ..., L_{i-1}$  that have at least one neighbor in  $L_{i-1}$

**Claim.**  $L_i$  contains precisely the vertices in V at distance *i* from *u*.

Prove by induction on c

## Analysis of BFS

#### To Show

- 1. procedure finds vertices in increasing order of distance
- 2. distances are correctly computed when vertex is found (added to queue)

Idea. Break execution of BFS into phases

- phase *i* starts when first element of  $L_i$  is added to queue
- phase *i* ends when last element in  $L_i$  is added to queue

#### Phase Illustration



(2) distance (2) layers (3) Phases

#### Phase Claim

**Claim.** Consider an execution of BFS procedure. Then for all elts in Li every phase *i*:

- ·1. phase *i* ends before phase i + 1 begins odded to que before  $a \cdot V$ any inly
- .2. every vertex from  $L_i$  is added to the queue in phase *i*

• 3. each vertex v added in phase i has d[v] = i

· If v in Lic DEVJ = i - Previous chaim was that if J in Li then d(u,v) = i = i

from Li

is missed

### Phase Claim

**Claim.** Consider an execution of BFS procedure. Then for every phase *i*:

- 1. phase *i* ends before phase i + 1 begins
- 2. every vertex from  $L_i$  is added to the queue in phase i
- 3. each vertex *v* added in phase *i* has d[v] = i

**Proof.** Use induction on *i* 

Base case i = 0. u is the only element in  $L_0$ , and it is added before any other elements, and d[u] is initialized to 0.

To show: Inductive Step of Phase Claim Claim holds Suppose claim holds for  $j \leq i$  (inductive hypothesis). Then:

- when phase *i* ends (1) all vertices from  $L_i$  are in queue and (2) no vertex in  $L_{i+1}$  is in queue
- start removing elements in  $L_i$  from queue
- when v in  $L_i$  is removed, any neighbors in  $L_{i+1}$  are added to queue (if not already)
- distance is set to  $d[v] \leftarrow i + 1 \leftarrow d[v7+]$  every v in  $L_{i+1}$  has neighbor in  $L_i$  = 1 by ind.
- - $\implies$  all  $v \in L_{i+1}$  are added to queue when last  $L_i$ vertex is removed from queue
- no vertex in  $L_{i+2}$  added to queue to this point

claim holds for phase c.

#### Conclusion

```
BFS(V, E, u):
intialize d[v] <- -1 for all v
d[u] <- 0
queue.add(u)
while queue is not empty do
v <- queue.remove()
for each neighbor w of v do
if d[w] = -1 then
d[w] <- d[v] + 1
queue.add(w)
return d
```

BFS procedure correctly computes all distances from *u*!

 $\neg O(m \cdot n) \longrightarrow O(m + n)$ consider removing V from quere -> examine neighbors O(1) work per neighbor → O(deg(v)) Total work: V, V2, ---, Vn  $O(deg(v_1)) + O(deg(v_2)) + \dots + O(deg(v_n))$ =  $O(deg(v_1) + cleg(v_2) + \dots + deg(v_n))$ Zim