Lecture 14: Graphs and Distances

COSC 311 Algorithms, Fall 2022

Announcements

- 1. Midterm on Friday

 - Accommodations
- 2. Study guide posted
 - Solutions to come (tomorrow?)

Overview

- 1. Eulerian Graphs
- 2. Graph Exploration

Last Time

Question. Is it possible to walk around Königsberg, cross every bridge *exactly* once, and return to where you started?

BoK as a Graph Problem

Original Question. Is it possible to walk around Königsberg, cross every bridge *exactly* once, and return to where you started?

Rephrasing as Graph Problem. Given a graph G = (V, E), is there a circuit that contains every edge $e \in E$ exactly once?

• A graph with this property is called Eulerian.

Theorem (Euler 1736). *G* is Eulerian if and only if *G* is connected and every vertex has even degree.

• Showed " \implies " direction last time

Finding Eulerian Circuits

Assume:

- *G* is connected and all vertices have even degrees Strategy:
- Starting from vertex *v*, walk in any direction
 - cross any edge from current location
 - remove edge from future consideration
 - repeat
- When stuck, reassess

Finding a Circuit

Input:

- graph G
 - set V of vertices
 - set *E* of edges
- starting vertex $v \in V$
- *assume* all vertices have even degree (*G* is **even**)

Output:

- a circuit $P = v_0 e_1 v_1 e_2 v_2 \cdots e_k v_k$ with $v_0 = v_k = v$
- every edge e incident to v is contained in P

FindCircuit Subroutine

Circuit Finding

Claim 1. If every vertex in G = (V, E) has even degree, then FindCircuit(V, E, v) returns a circuit beginning and ending at v.

Circuit Finding

Claim 1. If every vertex in G = (V, E) has even degree, then FindCircuit(V, E, v) returns a circuit beginning and ending at v.

• *Loop invariant*. If cur $\neq v$, then cur and v have odd degress, while all other vertices have even degrees.

. V started ul even, and we left

Circuit Finding

Claim 1. If every vertex in G = (V, E) has even degree, then FindCircuit(V, E, v) returns a circuit beginning and ending at v.

- *Loop invariant*. If $cur \neq v$, then cur and v have odd degress, while all other vertices have even degrees.
- *Consequence*. If deg(cur) = 0, then cur = v.
 - \implies can only get "stuck" at starting point!

Circuit Removal

C = circuit found, removed after FindCircuit(V, E, v)

Question. What can we say about remaining graph?

Circuit Removal

C = circuit found, removed after FindCircuit(V, E, v)Question. What can we say about remaining graph? Claim 2. Remaining graph G - C has all even degrees. *Why*?

Circuit Removal

C = circuit found, removed after FindCircuit(V, E, v)Question. What can we say about remaining graph? Claim 2. Remaining graph G - C has all even degrees. *Why*?

- vertices in *G* originally have even degree
- vertices in *C* have even degrees
- each vertex in G has even number of edges removed
- even even = even

Finding Eulerian Circuits Strategy.

- 1. Apply FindCircuit to find a circuit $P = v_0 e_1 v_1 \cdots v_k$
- 2. Traverse P
 - if a vertex v_i with deg $(v_i) > 0$ is encountered,
 - 1. apply FindCircuit to v_i to get a circuit Q
 - 2. splice Q into P at v_i
 - continue traversing P (with Q spliced in)

Eulerian Circuit Pseudocode

Correctness

Claim. If *G* is even and connected, then EulerCircuit returns an Eulerian circuit.

Argue by induction on m = number of edges in G.

Base Case, m = 0. If G is connected and has no edges, then G has only one vertex, so EulerCircuit correctly outputs an Eulerian circuit (of length 0)

Inductive Step

Suppose EulerCircuit finds an Eulerian circuit on all finds connected, even graphs with fewer than m edges. Then:

- 1. After removing P from G, G has fewer than m edges
- 2. G is still even
- 3. G may be disconnected, but all components touch P
- 4. By inductive hypothesis, EulerCircuit finds Eulerian circuit in each component
- 5. Splicing together circuits gives Eulerian circuit for whole graph

Conclusion

G is Eulerian if and only if G is even and connected.

If G is Eulerian, then an Eulerian circuit can be found by *greedily* traversing the graph, and recursively finding Eulerian circuits on remaining components.