
Lecture 10: Multiplication
COSC 311 Algorithms, Fall 2022



Announcements
1. Homework 2 Finalized Today (1 additional question)
2. No reading/lecture ticket for Monday
3. Thoughts on Reading



Overview
1. Recap of Binary Radix Sort
2. Binary Arithmetic
3. Multiplication via Divide and Conquer



Last Time
Binary Radix Sort

RadixSort(a, B):                # B is number of bits
  RadixSort(a, 1, size(a)+1, B)

RadixSort(a, i, j, b):
  if j - i <= 1 then
    return
  endif
  m <- BitSplit(a, i, j, b)
  RadixSort(a, i, m, b-1)
  RadixSort(a, m, j, b-1)
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Illustration



Why Does RadixSort Work?
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What is RadixSort Running Time?
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Conclusion
Lower Bound. Any algorithm that sorts all permutations
of size  using only  and  operations requires 

 comparisons.

Caveat. If values are all represented with  bits, then
RadixSort sorts  using  bit-wise comparisons.
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Binary Arithmetic



Multiplication in Binary
Example. Compute .10110 ∗ 1011
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Multiplication Procedure
  Multiply(a, b):
  product <- 0
  shifted <- a    # copy of a we will shift
  for i = 1 to size b do
    if b[i] = 1 do
      product <- Add(product, shifted)
    endif
    shifted << 1
  endfor

← running total
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Question

If  and  are represented with  bits, what is the running
time of ?

  Multiply(a, b):
  product <- 0
  shifted <- a    # copy of a we will shift
  for i = 1 to size b do
    if b[i] = 1 do
      product <- Add(product, shifted)
    endif
    shifted << 1
  endfor
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Another Question
Why did we previously assume arithmetic takes  time?O(1)
int in Java uses 32 bits



Multiplication via Divide and Conquer
Idea. Break numbers up into parts

Assume  and  are both represented with  bits, 
power of 
Write:

Rewrite multiplication

a b n = 2B n
2

a = = +a1a0 a12B a0
b = = +b1b0 b12B b0

ab = ( + )( + )a12B a0 b12B b0
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Does This Help?

Replaced  product with  bit numbers with  products
of  bits

ab = ( + )( + ) = + ( + ) +a12B a0 b12B b0 a1b122B a1b0 a0b1 2B

1 n 4
n/2

Not yet . . .



A Magic Trick

De!ne:

Now: 

Consider: 

Question. How do  relate to ?

ab = + ( + ) +a1b122B a1b0 a0b1 2B a0b0

= = + =c2 a1b1c1 a1b0 a0b1c0 a0b0

ab = + +c222B c12B c0

= ( + )( + ) = + + +c∗ a1 a0 b1 b0 a1b1 a1b0 a0b1 a0b0
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Counting Products
Standard multiplication:

Tricky multiplication

=c2 a1b1
= +c1 a1b0 a0b1
=c0 a0b0

=c2 a1b1
=c0 a0b0
= ( + )( + )c∗ a1 a0 b1 b0
= − −c1 c∗ c2 c0



Progress?
By using  to compute :

Compute

Computing  uses:

 multiplications of size 

 additions/subtractions/shi"s of size 

c∗ ab
=c2 a1b1
=c0 a0b0
= ( + )( + )c∗ a1 a0 b1 b0

ab = + ( − − ) +c222B c∗ c2 c0 2B c0

ab
3 n/2
O(1) O(n)



Karatsuba Multiplication
  KMult(a, b):
    n <- size(a) (= size(b))
    if n = 1 then return a*b
 a = a1 a0
 b = b1 b0
 c2 <- KMult(a1, b1)
 c0 <- KMult(a0, b0)
 c <- KMult(a1 + a0, b1 + b0)
 return (c2 << n) + ((c - c2 - c0) << (n/2)) + c00 00



Karatsuba Recursion Tree



E#ciency of Karatsuba
At depth :

 calls to KMult
size of each call is 

depth of recursion is 

Total running time:

Can show:

This expression is 

Simplify:
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Final Running Time
Result. The running time of Karatsuba multiplication is 

when  is reasonbly large, 

E.g.,  vs 

O( ) ≈ O( )nlog 3 n1.58

n ≪n1.58 n2

1, = 1, 000, 0000002 1, ≈ 55, 0000001.58



Next Time
More Divide and Conquer
Solving General Recurrences


