Lecture 10: Multiplication COSC 311 *Algorithms*, Fall 2022

Announcements

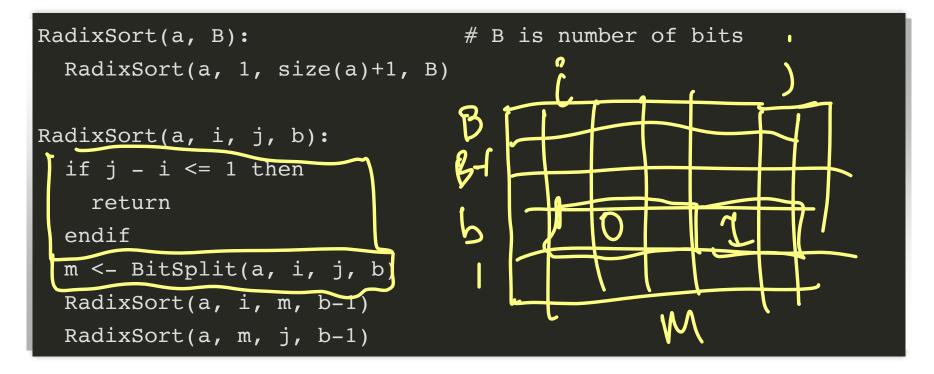
- 1. Homework 2 Finalized Today (1 additional question)
- 2. No reading/lecture ticket for Monday
- 3. Thoughts on Reading

Overview

- 1. Recap of Binary Radix Sort
- 2. Binary Arithmetic
- 3. Multiplication via Divide and Conquer

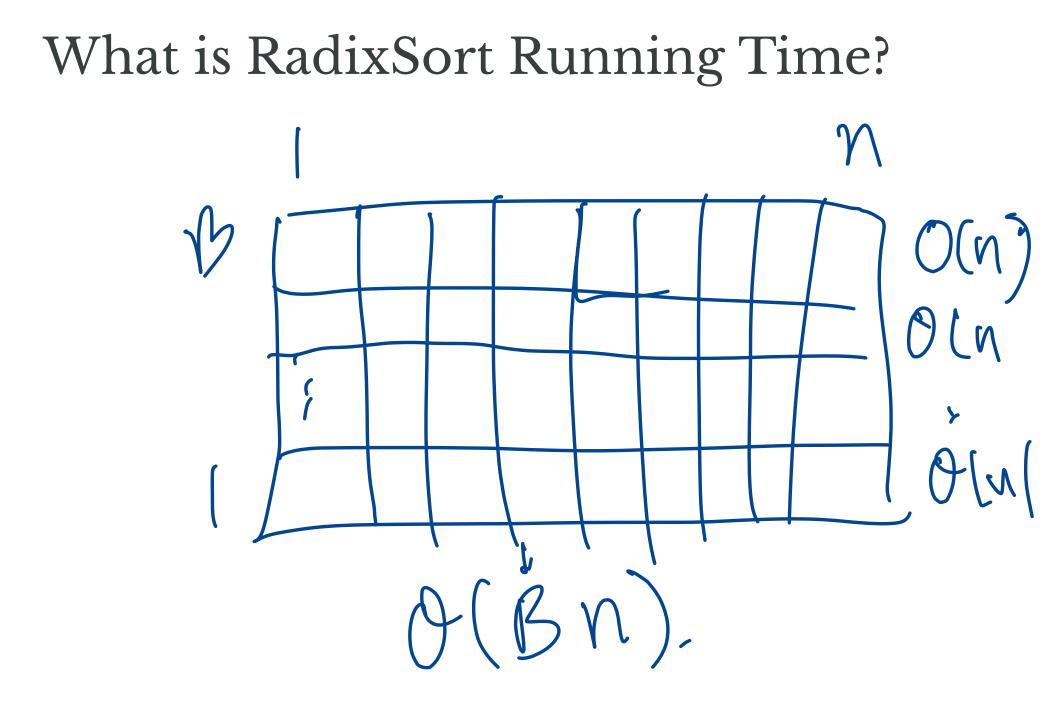
Last Time

Binary Radix Sort



Illustration

Why Does RadixSort Work?



Conclusion

Lower Bound. Any algorithm that sorts all permutations of size *n* using only compare and swap operations requires $\Omega(n \log n)$ comparisons.

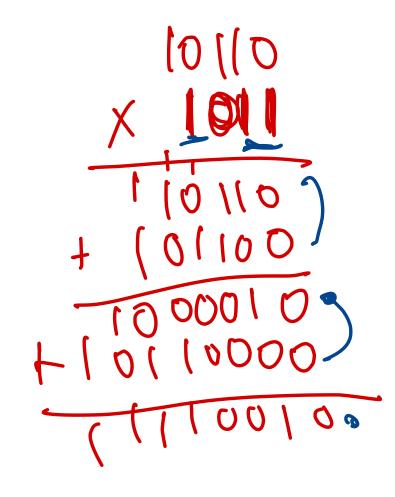
Caveat. If values are all represented with *B* bits, then RadixSort sorts *n* using O(Bn) bit-wise comparisons.

cc logn

Binary Arithmetic

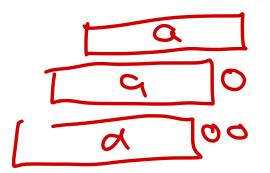
Multiplication in Binary

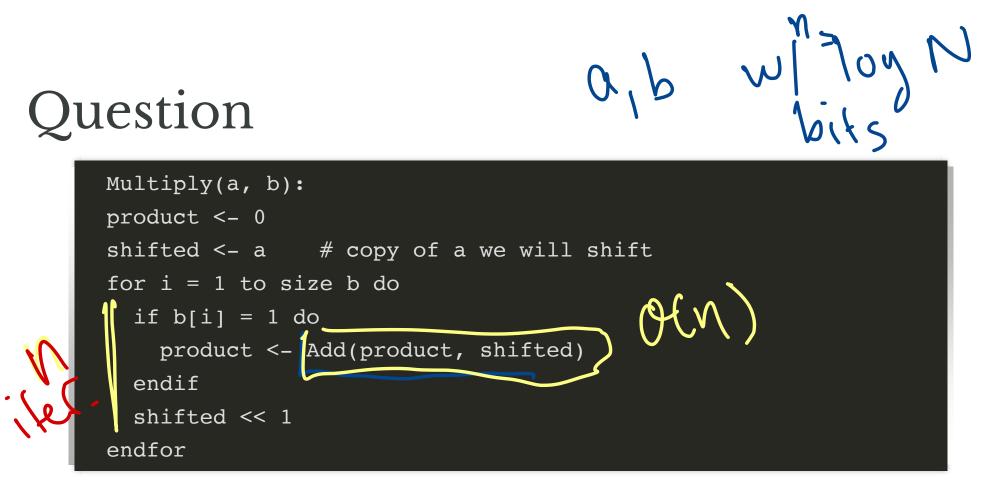
Example. Compute 10110 * 1011.



Multiplication Procedure

Multiply(a, b): Cuminy total product <- 0 shifted <- a 🛩 # copy of a we will shift for i = 1 to size b do if b[i] = 1 doproduct <- Add(product, shifted)</pre> endif shifted << 1 endfor





If a and b are represented with n bits, what is the running time of Multiply(a, b)? $\partial(n^2)? :$ $\partial(n^2) :$ $(a = a_n a_{n-1} \cdots a_1)$ $\leq 2^{n-1} 2^{n-2} \cdots + 2^n$

Another Question

Why did we previously assume arithmetic takes O(1) time?

int in Java uses 32 bits

Multiplication via Divide and Conquer

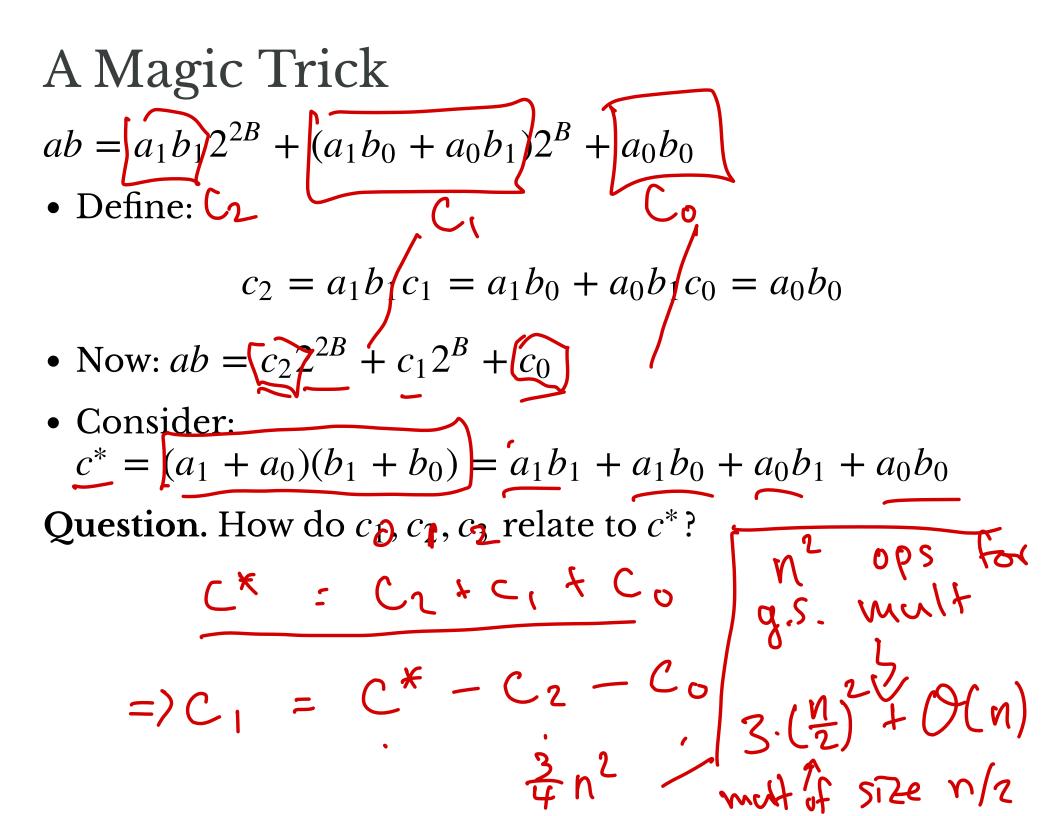
Idea. Break numbers up into parts

- Assume *a* and *b* are both represented with n = 2B bits, *n* power of 2
- Write: • $a = a_1 a_0 = a_1 2^B + a_0$ • $b = b_1 b_0 = b_1 2^B + b_0$ $a_1 \cdot 2^B$ $a_2 = a_1 2^B + b_0$ $a_3 - 2^B$ $a_4 - 2^B$ $a_5 - a_6$
- Rewrite multiplication • $ab = (a_1 2^B + a_0)(b_1 2^B + b_0) = a_1 b_1 2^B + a_1 b_2 4 b_1 4 b_1$

Does This Help? $ab = (a_1 2^B + a_0)(b_1 2^B + b_0) = a_1 b_1 2^{2B} + (a_1 b_0 + a_0 b_1) 2^B + b_0$

Replaced 1 product with *n* bit numbers with 4 products of *n*/2 bits

Not yet...



Counting Products

- Standard multiplication:
 - $c_2 = a_1 b_1$
 - $c_1 = a_1 b_0 + a_0 b_1$
 - $c_0 = a_0 b_0$
- Tricky multiplication
 - $c_2 = a_1 b_1$
 - $c_0 = a_0 b_0$
 - $c^* = (a_1 + a_0)(b_1 + b_0)$
 - $c_1 = c^* c_2 c_0$

Progress?

By using c^* to compute *ab*:

- $c_2 = a_1 b_1$
- $c_0 = a_0 b_0$
- $c^* = (a_1 + a_0)(b_1 + b_0)$

Compute

•
$$ab = c_2 2^{2B} + (c^* - c_2 - c_0)2^B + c_0$$

Computing *ab* uses:

- 3 multiplications of size *n*/2
- O(1) additions/subtractions/shifts of size O(n)

Karatsuba Multiplication

```
KMult(a, b):
n <- size(a) (= size(b))
if n = 1 then return a*b
        a = a1 a0
        b = b1 b0
        c2 <- KMult(a1, b1)
        c0 <- KMult(a1, b1)
        c0 <- KMult(a0, b0)
        c <- KMult(a1 + a0, b1 + b0)
        return (c2 << n) + ((c - c2 - c0) << (n/2)) + c0</pre>
```

Karatsuba Recursion Tree

Efficiency of Karatsuba At depth *k*:

- 3^k calls to KMult
- size of each call is $n/2^k$
- depth of recursion is log *n*

Total running time:

•
$$O(n) + \frac{3}{2}O(n) + \left(\frac{3}{2}\right)^2 O(n) + \dots + \left(\frac{3}{2}\right)^{\log n} O(n)$$

Can show:

This expression is O(3^{log n})
 Simplify:

Final Running Time

Result. The running time of Karatsuba multiplication is $O(n^{\log 3}) \approx O(n^{1.58})$

- when *n* is reasonaly large, $n^{1.58} \ll n^2$
- E.g., $1,000^2 = 1,000,000 \text{ vs } 1,000^{1.58} \approx 55,000$

Next Time

- More Divide and Conquer
- Solving General Recurrences