
Lecture 10: Multiplication
COSC 311 Algorithms, Fall 2022

Announcements
1. Homework 2 Finalized Today (1 additional question)
2. No reading/lecture ticket for Monday
3. Thoughts on Reading

Overview
1. Recap of Binary Radix Sort
2. Binary Arithmetic
3. Multiplication via Divide and Conquer

Last Time
Binary Radix Sort

RadixSort(a, B): # B is number of bits
 RadixSort(a, 1, size(a)+1, B)

RadixSort(a, i, j, b):
 if j - i <= 1 then
 return
 endif
 m <- BitSplit(a, i, j, b)
 RadixSort(a, i, m, b-1)
 RadixSort(a, m, j, b-1)

on :EH¥¥-i

Illustration

Why Does RadixSort Work?

ÉT#t

What is RadixSort Running Time?

i.#*:*
01km .

Conclusion
Lower Bound. Any algorithm that sorts all permutations
of size using only and operations requires

 comparisons.

Caveat. If values are all represented with bits, then
RadixSort sorts using bit-wise comparisons.

n compare swap
Ω(n log n)

B
n O(Bn)

- -

0
a login

Binary Arithmetic

Multiplication in Binary
Example. Compute .10110 ∗ 1011

10110

Xp☒M_g- -
I 10110)

t 101100
if •

Y::i:÷?

Multiplication Procedure
 Multiply(a, b):
 product <- 0
 shifted <- a # copy of a we will shift
 for i = 1 to size b do
 if b[i] = 1 do
 product <- Add(product, shifted)
 endif
 shifted << 1
 endfor

← running total

F
€◦
④00

Question

If and are represented with bits, what is the running
time of ?

 Multiply(a, b):
 product <- 0
 shifted <- a # copy of a we will shift
 for i = 1 to size b do
 if b[i] = 1 do
 product <- Add(product, shifted)
 endif
 shifted << 1
 endfor

a b n
Multiply(a, b)

a ,b w↑ToyN
bits

an)
FA

01h2) ? :

" ① (a)
.

- any . /
Qb ≤ N≤ 21,
a = UnUn-at

- - 9 ,

≤ 2h
-tin-7 . . -+2°

= 2
"
- I

Another Question
Why did we previously assume arithmetic takes time?O(1)
int in Java uses 32 bits

Multiplication via Divide and Conquer
Idea. Break numbers up into parts

Assume and are both represented with bits,
power of
Write:

Rewrite multiplication

a b n = 2B n
2

a = = +a1a0 a12B a0
b = = +b1b0 b12B b0

ab = (+)(+)a12B a0 b12B b0

:⇒:÷
a =÷g +Ña

☐
-
- -
-

=☒E☐+
Mutt + ao☒
size 4 multn ,f site

Does This Help?

Replaced product with bit numbers with products
of bits

ab = (+)(+) = + (+) +a12B a0 b12B b0 a1b122B a1b0 a0b1 2B

1 n 4
n/2

Not yet . . .

A Magic Trick

De!ne:

Now:

Consider:

Question. How do relate to ?

ab = + (+) +a1b122B a1b0 a0b1 2B a0b0

= = + =c2 a1b1c1 a1b0 a0b1c0 a0b0

ab = + +c222B c12B c0

= (+)(+) = + + +c∗ a1 a0 b1 b0 a1b1 a1b0 a0b1 a0b0

, ,c1 c2 c3 c∗

a. F.
D-

-

-0

-
- '

- - -
-

0 A 2 2
ops for

g.s .
Mutt

⇒ :|:a.↓

¥n2 /mut If silent

Counting Products
Standard multiplication:

Tricky multiplication

=c2 a1b1
= +c1 a1b0 a0b1
=c0 a0b0

=c2 a1b1
=c0 a0b0
= (+)(+)c∗ a1 a0 b1 b0
= − −c1 c∗ c2 c0

Progress?
By using to compute :

Compute

Computing uses:

 multiplications of size

 additions/subtractions/shi"s of size

c∗ ab
=c2 a1b1
=c0 a0b0
= (+)(+)c∗ a1 a0 b1 b0

ab = + (− −) +c222B c∗ c2 c0 2B c0

ab
3 n/2
O(1) O(n)

Karatsuba Multiplication
 KMult(a, b):
 n <- size(a) (= size(b))
 if n = 1 then return a*b
 a = a1 a0
 b = b1 b0
 c2 <- KMult(a1, b1)
 c0 <- KMult(a0, b0)
 c <- KMult(a1 + a0, b1 + b0)
 return (c2 << n) + ((c - c2 - c0) << (n/2)) + c00 00

Karatsuba Recursion Tree

E#ciency of Karatsuba
At depth :

 calls to KMult
size of each call is

depth of recursion is

Total running time:

Can show:

This expression is

Simplify:

k

3k

n/2k

log n

O(n) + O(n) + O(n) + ⋯ + O(n)3
2 ()3

2
2 ()3

2
log n

O()3log n

Final Running Time
Result. The running time of Karatsuba multiplication is

when is reasonbly large,

E.g., vs

O() ≈ O()nlog 3 n1.58

n ≪n1.58 n2

1, = 1, 000, 0000002 1, ≈ 55, 0000001.58

Next Time
More Divide and Conquer
Solving General Recurrences

