L.ecture 09: Lower Bounds
and RadixSort
COSC 311 Algorithms, Fall 2022

Overview

1. Sorting Lower Bound
2. Binary Radix Sort

Last Time
We asked:

Can we sort n elements faster than

O(nlogn)?

I claimed: not really?

1. Decision trees
e encode executions of algorithms on set of inputs

e “decision” = response to compare operation

2. Sortmg1t task requires that aliorlthm distinguishes all
pairs of permutations) W

e decision tree must have many leaves
3. Conclude: sorting requires £2(n log n) compare operations

’L C s(\\bcxxl\

T ousk

Decision Irees Again \9«\\ - Y\K.
Follow execution of@n all inputs from §,, -\ (W\X' 1

Define a binary tree:

1. each node corresponds to a single compare operation

2. each node has two children corresponding to two
possible outcomes of compare

Form this tree for all comparisons made on all inputs in §,,

 label each node with inputs consistent with all compare
outcomes

Decision Tree Example, n = 3

for i = 2 to n do

| § <= i

| while j > 1 and compare(a, jz1, 3) do

| | swap(a, 3, j-1)¢ & y-\

(123

Features of Decision Trees

1. Depth of tree = max # of comKare operations on any

input ‘ callg ~ campPace(o,c JJ>
2. Algorithm [distinguisheq inputs ¢ and A < a and b
label different leaves =+
A

LA Qe {8 b, ‘))

(123

Indistinguishability Claim

Claim. If A does not distinguish permutations a and b
with a # b, then A does not sort both ¢ and b.

Y
Why? U B 0 afl &Q,st
: (
a D { £ 1 1 Su.:u@/ -(’Ew
LW L 11 \T & Fb ariS.
u i‘}r‘)
abies sor’r'mc]
’_E% §or&—&c& &1—;\3 -
_ 2y~ —l . L 1
G ’ ! — ‘)\;& AAN\M]

=2, -0 N 05l
5 (< \ v 5N

ST \Sa| =0
Indistinguishability Consequence

Consequence. If A sorts all arrays of size n, then every leat
of A’s decision tree is labeled with a single permutation

array.

Why?

TL B Socks, A d(‘s{-'ivxc/u(sug
u\l Daces o Plims

N\ pag MuwdedionsS
sonk L distinct lo e

= \[_\& (LadeS .

How Big 1s Decision Tree?

How many leaves must a correct decision tree have?
—
o

How deep must decion tree be?
T - dceo W/ d&\){'g\ d

Wowd Wiy leaues .

(ocj(c«\o) = [orj(as

+ \ocl(‘o>
2. Fix inputs §,, = permutations of size n a>h \‘:SZ, oa D> \OC} b

Putting it All Together

1. Consider any sorting algorithm A

3. Decision tree must have at least |S,, |= n! leave
4. Decision tree must have depth at least log n!

5. A must perforrrs at least log n! comparisons
. ’ C \r\\ov1 W
Claim. M = Q(nlogn)

Conclusion

Theorem. Any algorithm that sorts all permutations of
size n using only @n_m_&m)and? swap joperations requires

Q(nlog n) comparisons.

Question

The Q(nlog n) lower bound critically assumes that array is
only accessed and modified with compare and swap.

e What if we have more refined access’

« What if we see binary representation of elements?

Sorting Binary Values

Observation. If a consists of only Os and 1s, we can sort a
in O(n) time.

How? o\t fcom GuicdeSort

Binary Split Illustration

H EHE BN B E B
\ /

HE BN §H EEE
\ /

Sorting Numbers Represented in

Binary
Assume a consists of » numbers, each with binary
representation of B bits o =31 4 2] &

e a[i] = number at index i

e a[i][j] = jth bit of a|i] 3 =0
aCeTCI 1s bk) = 0ol
aCeI(27 2¢ bl % =100

B 2= 01O
3 1 4 2
‘ AT
b //// M /7774
W /i (i B R 1\

A Sorting Idea
Inspired by QuickSort:

e split array by “value”
e rather than comparing values, compare individual bits

How to perform firstsplit?

R - > 1 2
’ «!ﬁw ! //;7‘/

- v, 7//’ :> L 7/, 77,
! /////// ////// \;‘ . /244 ///

Bit Split Subroutine | \

Os | s

e indicesi < j L) o,

e bit index b

!

Behavior: }—

N

e return value m withi <m <j
e split values of afi..j — 1] such that
. bth bit of ali..m — 1] is 0 WA
» pthbitofa[m..j— 1]1is 1

BitSplit Pseudocode

BitSplit(a, i, J, b):
left <- i, right <- j
while left < right do:
if a[left][b] = 1 and a[right][b] = 0 then

swap(a, left, right)
left++, right--
else
if a[left][b] = 0 then left++
if a[right][b] = 1 then right--
endif

endwhile
if a[right][b] = 0 then return right+l else return right

RadixSort(a, B): # B is number of bits

RadixSort(a, 1, size(a)+l, B)

RadixSort(a
if j - 1 <= 1 then

return

[1lustration

Why Does RadixSort Work?
3k Split (a1 w, B)

What is RadixSort Running Time?

O (B-n)

Fxeccge - COnvin o Sdf

(s s ~<{7\/\{‘.

Next Time

Arithmetic!

e multiplication

