
Lecture 09: Lower Bounds
and RadixSort

COSC 311 Algorithms, Fall 2022



Overview
1. Sorting Lower Bound
2. Binary Radix Sort



Last Time
We asked:

I claimed: not really?

1. Decision trees
encode executions of algorithms on set of inputs
“decision” = response to  operation

2. Sorting task requires that algorithm distinguishes all
pairs of permutations

decision tree must have many leaves
3. Conclude: sorting requires   operations

Can we sort  elements faster than 
?

n
O(n log n)

compare

Ω(n log n) compare

in

E- c n login
I eousf



Decision Trees Again
Follow execution of  on all inputs from 

De!ne a binary tree:

1. each node corresponds to a single  operation
2. each node has two children corresponding to two

possible outcomes of 

Form this tree for all comparisons made on all inputs in 

label each node with inputs consistent with all 
outcomes
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Decision Tree Example, n = 3
  for i = 2 to n do
  | j <- i
  | while j > 1 and compare(a, j-1, j) do
  | | swap(a, j, j-1)i j ← j _ ,
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Features of Decision Trees
1. Depth of tree  max # of  operations on any

input
2. Algorithm distinguishes inputs  and  and 

label di"erent leaves
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Indistinguishability Claim
Claim. If  does not distinguish permutations  and 
with , then  does not sort both  and .

Why?
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Indistinguishability Consequence
Consequence. If  sorts all arrays of size , then every leaf
of ’s decision tree is labeled with a single permutation
array.

Why?

A n
A

Isnt _

- n !

If A Sorts
,
A distinguishes

all pairs of perms

⇒ all permutations
sent to distinct leaves.

⇒ n! leaves .



How Big is Decision Tree?
How many leaves must a correct decision tree have?

How deep must decion tree be?

≥ n !

Bin . tree w/ depth d
how many leaves ?

n! ≤ # leaves ≤ 2d

⇒ n : ≤ 24 ⇒ d ≥ loqn !



Putting it All Together
1. Consider any sorting algorithm 

2. Fix inputs  permutations of size 

3. Decision tree must have at least  leaves

4. Decision tree must have depth at least 

5.  must perform at least  comparisons

Claim. 
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Conclusion
Theorem. Any algorithm that sorts all permutations of
size  using only  and  operations requires 

 comparisons.
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Question
The  lower bound critically assumes that array is
only accessed and modi!ed with  and .

What if we have more re!ned access?

What if we see binary representation of elements?

Ω(n log n)
compare swap



Sorting Binary Values
Observation. If  consists of only s and s, we can sort 
in  time.

How?

a 0 1 a
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Split from quicksort



Binary Split Illustration

































Sorting Numbers Represented in
Binary
Assume  consists of  numbers, each with binary
representation of  bits

 number at index 

th bit of 

a n
B

a[i] = i
a[i][j] = j a[i]

a = [ 3 1 42] f-

3--011

aioli] Is bit 1--001

Ceti >ED 2s bit . 4=100

: 2--010

3 I 4 2

"



A Sorting Idea
Inspired by QuickSort:

split array by “value”
rather than comparing values, compare individual bits

How to perform !rst split?
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Bit Split Subroutine
Input:

array 

indices 

bit index 

Behavior:

return value  with 

split values of  such that

th bit of  is 

th bit of  is 

a
i < j

b

m i ≤ m ≤ j
a[i. . j − 1]

b a[i. . m − 1] 0
b a[m. . j − 1] 1

↓



BitSplit Pseudocode
  BitSplit(a, i, j, b):
    left <- i, right <- j
    while left < right do:
      if a[left][b] = 1 and a[right][b] = 0 then
        swap(a, left, right)
        left++, right--
      else
        if a[left][b] = 0 then left++
        if a[right][b] = 1 then right--
      endif
    endwhile
    if a[right][b] = 0 then return right+1 else return right



RadixSort
RadixSort(a, B):                # B is number of bits
  RadixSort(a, 1, size(a)+1, B)

RadixSort(a, i, j, b):
  if j - i <= 1 then
    return
  endif
  m <- BitSplit(a, i, j, b)
  RadixSort(a, i, m, b-1)
  RadixSort(a, m, j, b-1)

# Bits in each
value
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Illustration



Why Does RadixSort Work?

Bit split ( a , 'in , B)
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What is RadixSort Running Time?

0 (Bon )

Exercise : convince self
this is right .



Next Time
Arithmetic!

multiplication


