
Lecture 09: Lower Bounds
and RadixSort

COSC 311 Algorithms, Fall 2022

Overview
1. Sorting Lower Bound
2. Binary Radix Sort

Last Time
We asked:

I claimed: not really?

1. Decision trees
encode executions of algorithms on set of inputs
“decision” = response to operation

2. Sorting task requires that algorithm distinguishes all
pairs of permutations

decision tree must have many leaves
3. Conclude: sorting requires operations

Can we sort elements faster than
?

n
O(n log n)

compare

Ω(n log n) compare

in

E- c n login
I eousf

Decision Trees Again
Follow execution of on all inputs from

De!ne a binary tree:

1. each node corresponds to a single operation
2. each node has two children corresponding to two

possible outcomes of

Form this tree for all comparisons made on all inputs in

label each node with inputs consistent with all
outcomes

A Sn

compare

compare
Sn

compare

1,2 , - - - in

☐
r

-

in - In-1) - . - I

Decision Tree Example, n = 3
 for i = 2 to n do
 | j <- i
 | while j > 1 and compare(a, j-1, j) do
 | | swap(a, j, j-1)i j ← j _ ,

Comparecqzij

"""

231+ :
÷:}1=2%0 312

F

,¥☒i→ 123 i3→ 123

Features of Decision Trees
1. Depth of tree max # of operations on any

input
2. Algorithm distinguishes inputs and and

label di"erent leaves

= compare

a b ⟺ a bg-
← A calls compareCai,j)

€aai
compare lb,i;)

F T (swap)

+ ¥ i :{
231

'

=ñ☒Ñ→%
,É☒ i→ 123 ¥2Ñ→ 123

Indistinguishability Claim
Claim. If does not distinguish permutations and
with , then does not sort both and .

Why?

A a b
a ≠ b A a b

a

If a -1-6 before

swap, then

b a -eb after .

↓
after ortiay

"

If sorted
a f-bya = 1,2 , _ . _

,
n

b = 1,2 , . . _ , n
] =

'

but not

possible
-

Indistinguishability Consequence
Consequence. If sorts all arrays of size , then every leaf
of ’s decision tree is labeled with a single permutation
array.

Why?

A n
A

Isnt _

- n !

If A Sorts
,
A distinguishes

all pairs of perms

⇒ all permutations
sent to distinct leaves.

⇒ n! leaves .

How Big is Decision Tree?
How many leaves must a correct decision tree have?

How deep must decion tree be?

≥ n !

Bin . tree w/ depth d
how many leaves ?

n! ≤ # leaves ≤ 2d

⇒ n : ≤ 24 ⇒ d ≥ loqn !

Putting it All Together
1. Consider any sorting algorithm

2. Fix inputs permutations of size

3. Decision tree must have at least leaves

4. Decision tree must have depth at least

5. must perform at least comparisons

Claim.

A
=Sn n

∣ ∣= n!Sn
log n!

A log n!
log n! = Ω(n log n)

log(ab) = log (a)
1- loqcb)

a > b
a > loqb

☐
? C hlogn

/oglu !) = toy (n cut
> in -2) . . - 2 . 1)

=É t log 2 + log I
stop at log (E)

?¥%;¥¥%:""↳±__animal

Conclusion
Theorem. Any algorithm that sorts all permutations of
size using only and operations requires

 comparisons.
n compare swap

Ω(n log n)
☐ ☐

Question
The lower bound critically assumes that array is
only accessed and modi!ed with and .

What if we have more re!ned access?

What if we see binary representation of elements?

Ω(n log n)
compare swap

Sorting Binary Values
Observation. If consists of only s and s, we can sort
in time.

How?

a 0 1 a
O(n)

Split from quicksort

Binary Split Illustration

Sorting Numbers Represented in
Binary
Assume consists of numbers, each with binary
representation of bits

 number at index

th bit of

a n
B

a[i] = i
a[i][j] = j a[i]

a = [3 1 42] f-

3--011

aioli] Is bit 1--001

Ceti >ED 2s bit . 4=100

: 2--010

3 I 4 2

"

A Sorting Idea
Inspired by QuickSort:

split array by “value”
rather than comparing values, compare individual bits

How to perform !rst split?

it ⇒ : t.TEE.EE#:-EE

Bit Split Subroutine
Input:

array

indices

bit index

Behavior:

return value with

split values of such that

th bit of is

th bit of is

a
i < j

b

m i ≤ m ≤ j
a[i. . j − 1]

b a[i. . m − 1] 0
b a[m. . j − 1] 1

↓

BitSplit Pseudocode
 BitSplit(a, i, j, b):
 left <- i, right <- j
 while left < right do:
 if a[left][b] = 1 and a[right][b] = 0 then
 swap(a, left, right)
 left++, right--
 else
 if a[left][b] = 0 then left++
 if a[right][b] = 1 then right--
 endif
 endwhile
 if a[right][b] = 0 then return right+1 else return right

RadixSort
RadixSort(a, B): # B is number of bits
 RadixSort(a, 1, size(a)+1, B)

RadixSort(a, i, j, b):
 if j - i <= 1 then
 return
 endif
 m <- BitSplit(a, i, j, b)
 RadixSort(a, i, m, b-1)
 RadixSort(a, m, j, b-1)

Bits in each
value

☐

€-8

Illustration

Why Does RadixSort Work?

Bit split (a , 'in , B)

☐

=
< ↑zB ≥↑zB

What is RadixSort Running Time?

0 (Bon)

Exercise : convince self
this is right .

Next Time
Arithmetic!

multiplication

