
Lecture 02: Sorting and
Induction

COSC 311 Algorithms, Fall 2022

Announcements
1. Accountability groups (message today)
2. O!ce hours

Evening TA sessions Sunday, Wednesday (TBD)
My drop-in: Thursday 11-12, 2-3 (?)
By appointment: TBD

3. Emails: subject includes [COSC 311]
4. Section enrollment
5. Lecture ticket reminder (read solutions!)

Today
1. Sorting Task
2. Insertion Sort
3. Induction

Task: Sorting
Input:

Sequence of numbers

e.g.,

Output:

A sorted sequence of same elements as

 contains same elements with same multiplicities as

e.g.,

a n
a = 17, 7, 5, 2, 3, 19, 5, 13

s a
s a

≤ ≤ ⋯ ≤s1 s2 sn
s = 2, 3, 5, 5, 7, 13, 17, 19

So Far
Sorting task is underspeci"ed!

Why?
• what are allowed 0ps .

• how fast ? (resources)

space ?

• comparison

• representation

So Far
Sorting task is underspeci"ed!

Why?
1. representation
2. supported operations

So Far
Sorting task is underspeci"ed!

Why?
1. representation
2. supported operations

Examples:

stack of exams
array of numbers
tasks by deadline

Each may support di#erent operations & require di#erent
techniques to solve e!ciently

Going Forward
Spend ~2 weeks on sorting

Elementary algorithms
argue correctness

mathematical induction
argue running time

big O notation
Divide-and-conquer algorithms

algorithms: MergeSort, QuickSort, RadixSort
argue running time

“master method”

- SelectionSort , Insertion
Sort

BubbleSort

Sorting Arrays
Representation:

 an array of size

Supported Operations

return if and otherwise

before and

a$er and

a n
a[1], a[2], … , a[n]

compare(a, i, j)
true a[i] > a[j] false

swap(a, i, j)
a[i] = x a[j] = y

a[i] = y a[j] = x

€

Example

?

?

a = [17, 7, 5, 2, 3, 19, 5, 13]

compare(a, 2, 6)

swap(a, 2, 5)

I

⑧ 7 8

/
→ false

a→ [17 , 3,5, 2,7, 19, 5,13]

Central Tenet
Break a large task into smaller subtasks.

Lecture Ticket
Express “selection sort” in pseudocode

"nd smallest element and put it at index 1
"nd second smallest element and put it at index 2
"nd third smallest element and put it at index 3
…

Example
Sorting a small array:

a- [iii.¥4,337←

→
-

→÷←
[5,2 , 1. 4,3]
**Er

→iF
→I" 5) ✓

SelectionSort in Pseudocode
01 SelectionSort(a):
02 n <- size(a)
03 for j = 1 to n - 1 do
04 min <- j
05 for i = j+1 to n do
06 if compare(a, min, i)
07 min <- i
08 endif
09 endfor
10 swap(a, j, min)
11 endfor

true if

Jr
a Emin] > ati]

Min is index of

→ ← min value in al-j.in

Think about : does work for duplicate
values ?

Prove correctness mathematically?

Why does SelectionSort Work?
- find min value not yet
sorted and puts it

in right place

Each step succeeds because
all previous steps succeeded

Arguing Correctness
Goal. Logically deduce that algorithm succeeds on all
inputs.

To do:

specify task
specify allowed operations and e#ects
specify algorithm
demonstrate that on all possible inputs, algorithm
output satis"es task speci"cation

A Remark
It may be “obvious” to you that SelectionSort works.

give formal analysis of algorithm here
introduce tools that will help when things become less
obvious

Specifying the Sorting Task
Input. Array of numbers

Output. Sorted array :

1. contains the same elements as

2. is sorted:

for every index ,

a
s

s a
s s[1] ≤ s[2] ≤ ⋯ ≤ s[n]

i < n s[i] ≤ s[i + 1]

always
← holds if

⑥ all manipulations
are swaps

Allowed Operations
: return if

:

before have and

a$er have and

compare(a, i, j) true a[i] > a[j]
swap(a, i, j)

swap a[i] = x a[j] = y
swap a[i] = y a[j] = x

=

Allowed Operations
: return if

:

before have and

a$er have and

compare(a, i, j) true a[i] > a[j]
swap(a, i, j)

swap a[i] = x a[j] = y
swap a[i] = y a[j] = x

Observation. If is array formed from by any sequence
of operations, then and contain the same
elements.

Item (1) from sorting task is satis"ed for any procedure
that only modi"es the array with swaps

s a
swap s a

Next Step
Claim. The output of SelectionSort(a) is sorted.

Question. Why does iteration select th smallest element
in the array?

01 SelectionSort(a):
02 n <- size(a)
03 for j = 1 to n - 1 do
04 min <- j
05 for i = j+1 to n do
06 if compare(a, min, i)
07 min <- i
08 endif
09 endfor
10 swap(a, j, min)
11 endfor
12 end

j j
no guarantee

Fix
¥Éonfairs j - l smallest efts

Inductive Reasoning
Question. Why does iteration select th smallest element
in the array?

Reason. (informal)

1. Loop in lines 5-9 selects smallest value in a[j..n]
2. Previous steps moved smaller values to a[1..j-1]
Moral. Step j succeeds because steps 1, 2,...,j-1
succeeded

inductive reasoning

j j

04 min <- j
05 for i = j+1 to n do
06 if compare(a, min, i)
07 min <- i
08 endif
09 endfor
10 swap(a, j, min)

