
A L G O R I T H M S
I N T R O D U C T I O N T O

T H I R D E D I T I O N

T H O M A S H.

C H A R L E S E.

R O N A L D L .

C L I F F O R D S T E I N

R I V E S T

L E I S E R S O N

C O R M E N

4.5 The master method for solving recurrences 93

4.4-3
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D 4T .n=2C 2/C n. Use the substitution method to verify your answer.
4.4-4
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D 2T .n ! 1/C 1. Use the substitution method to verify your answer.
4.4-5
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D T .n!1/CT .n=2/Cn. Use the substitution method to verify your answer.
4.4-6
Argue that the solution to the recurrence T .n/ D T .n=3/CT .2n=3/Ccn, where c
is a constant, is !.n lg n/ by appealing to a recursion tree.
4.4-7
Draw the recursion tree for T .n/ D 4T .bn=2c/ C cn, where c is a constant, and
provide a tight asymptotic bound on its solution. Verify your bound by the substi-
tution method.
4.4-8
Use a recursion tree to give an asymptotically tight solution to the recurrence
T .n/ D T .n ! a/C T .a/C cn, where a " 1 and c > 0 are constants.
4.4-9
Use a recursion tree to give an asymptotically tight solution to the recurrence
T .n/ D T .˛n/C T ..1 ! ˛/n/C cn, where ˛ is a constant in the range 0 < ˛ < 1
and c > 0 is also a constant.

4.5 The master method for solving recurrences

The master method provides a “cookbook” method for solving recurrences of the
form
T .n/ D aT .n=b/C f .n/ ; (4.20)
where a " 1 and b > 1 are constants and f .n/ is an asymptotically positive
function. To use the master method, you will need to memorize three cases, but
then you will be able to solve many recurrences quite easily, often without pencil
and paper.

94 Chapter 4 Divide-and-Conquer

The recurrence (4.20) describes the running time of an algorithm that divides a
problem of size n into a subproblems, each of size n=b, where a and b are positive
constants. The a subproblems are solved recursively, each in time T .n=b/. The
function f .n/ encompasses the cost of dividing the problem and combining the
results of the subproblems. For example, the recurrence arising from Strassen’s
algorithm has a D 7, b D 2, and f .n/ D ‚.n2/.

As a matter of technical correctness, the recurrence is not actually well defined,
because n=b might not be an integer. Replacing each of the a terms T .n=b/ with
either T .bn=bc/ or T .dn=be/ will not affect the asymptotic behavior of the recur-
rence, however. (We will prove this assertion in the next section.) We normally
find it convenient, therefore, to omit the floor and ceiling functions when writing
divide-and-conquer recurrences of this form.

The master theorem
The master method depends on the following theorem.

Theorem 4.1 (Master theorem)
Let a " 1 and b > 1 be constants, let f .n/ be a function, and let T .n/ be defined
on the nonnegative integers by the recurrence
T .n/ D aT .n=b/C f .n/ ;

where we interpret n=b to mean either bn=bc or dn=be. Then T .n/ has the follow-
ing asymptotic bounds:
1. If f .n/ D O.nlogb a!!/ for some constant " > 0, then T .n/ D ‚.nlogb a/.
2. If f .n/ D ‚.nlogb a/, then T .n/ D ‚.nlogb a lg n/.
3. If f .n/ D !.nlogb aC!/ for some constant " > 0, and if af .n=b/ # cf .n/ for

some constant c < 1 and all sufficiently large n, then T .n/ D ‚.f .n//.

Before applying the master theorem to some examples, let’s spend a moment
trying to understand what it says. In each of the three cases, we compare the
function f .n/ with the function nlogb a. Intuitively, the larger of the two functions
determines the solution to the recurrence. If, as in case 1, the function nlogb a is the
larger, then the solution is T .n/ D ‚.nlogb a/. If, as in case 3, the function f .n/
is the larger, then the solution is T .n/ D ‚.f .n//. If, as in case 2, the two func-
tions are the same size, we multiply by a logarithmic factor, and the solution is
T .n/ D ‚.nlogb a lg n/ D ‚.f .n/ lg n/.

Beyond this intuition, you need to be aware of some technicalities. In the first
case, not only must f .n/ be smaller than nlogb a, it must be polynomially smaller.

4.5 The master method for solving recurrences 95

That is, f .n/ must be asymptotically smaller than nlogb a by a factor of n! for some
constant " > 0. In the third case, not only must f .n/ be larger than nlogb a, it also
must be polynomially larger and in addition satisfy the “regularity” condition that
af .n=b/ # cf .n/. This condition is satisfied by most of the polynomially bounded
functions that we shall encounter.

Note that the three cases do not cover all the possibilities for f .n/. There is
a gap between cases 1 and 2 when f .n/ is smaller than nlogb a but not polynomi-
ally smaller. Similarly, there is a gap between cases 2 and 3 when f .n/ is larger
than nlogb a but not polynomially larger. If the function f .n/ falls into one of these
gaps, or if the regularity condition in case 3 fails to hold, you cannot use the master
method to solve the recurrence.

Using the master method
To use the master method, we simply determine which case (if any) of the master
theorem applies and write down the answer.

As a first example, consider
T .n/ D 9T .n=3/C n :

For this recurrence, we have a D 9, b D 3, f .n/ D n, and thus we have that
nlogb a D nlog3 9 D ‚.n2). Since f .n/ D O.nlog3 9!!/, where " D 1, we can apply
case 1 of the master theorem and conclude that the solution is T .n/ D ‚.n2/.

Now consider
T .n/ D T .2n=3/C 1;

in which a D 1, b D 3=2, f .n/ D 1, and nlogb a D nlog3=2 1 D n0 D 1. Case 2
applies, since f .n/ D ‚.nlogb a/ D ‚.1/, and thus the solution to the recurrence
is T .n/ D ‚.lg n/.

For the recurrence
T .n/ D 3T .n=4/C n lg n ;

we have a D 3, b D 4, f .n/ D n lg n, and nlogb a D nlog4 3 D O.n0:793/.
Since f .n/ D !.nlog4 3C!/, where " $ 0:2, case 3 applies if we can show that
the regularity condition holds for f .n/. For sufficiently large n, we have that
af .n=b/ D 3.n=4/ lg.n=4/ # .3=4/n lg n D cf .n/ for c D 3=4. Consequently,
by case 3, the solution to the recurrence is T .n/ D ‚.n lg n/.

The master method does not apply to the recurrence
T .n/ D 2T .n=2/C n lg n ;

even though it appears to have the proper form: a D 2, b D 2, f .n/ D n lg n,
and nlogb a D n. You might mistakenly think that case 3 should apply, since

96 Chapter 4 Divide-and-Conquer

f .n/ D n lg n is asymptotically larger than nlogb a D n. The problem is that it
is not polynomially larger. The ratio f .n/=nlogb a D .n lg n/=n D lg n is asymp-
totically less than n! for any positive constant ". Consequently, the recurrence falls
into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

Let’s use the master method to solve the recurrences we saw in Sections 4.1
and 4.2. Recurrence (4.7),
T .n/ D 2T .n=2/C‚.n/ ;

characterizes the running times of the divide-and-conquer algorithm for both the
maximum-subarray problem and merge sort. (As is our practice, we omit stating
the base case in the recurrence.) Here, we have a D 2, b D 2, f .n/ D ‚.n/, and
thus we have that nlogb a D nlog2 2 D n. Case 2 applies, since f .n/ D ‚.n/, and so
we have the solution T .n/ D ‚.n lg n/.

Recurrence (4.17),
T .n/ D 8T .n=2/C‚.n2/ ;

describes the running time of the first divide-and-conquer algorithm that we saw
for matrix multiplication. Now we have a D 8, b D 2, and f .n/ D ‚.n2/,
and so nlogb a D nlog2 8 D n3. Since n3 is polynomially larger than f .n/ (that is,
f .n/ D O.n3!!/ for " D 1), case 1 applies, and T .n/ D ‚.n3/.

Finally, consider recurrence (4.18),
T .n/ D 7T .n=2/C‚.n2/ ;

which describes the running time of Strassen’s algorithm. Here, we have a D 7,
b D 2, f .n/ D ‚.n2/, and thus nlogb a D nlog2 7. Rewriting log2 7 as lg 7 and
recalling that 2:80 < lg 7 < 2:81, we see that f .n/ D O.nlg 7!!/ for " D 0:8.
Again, case 1 applies, and we have the solution T .n/ D ‚.nlg 7/.

Exercises
4.5-1
Use the master method to give tight asymptotic bounds for the following recur-
rences.
a. T .n/ D 2T .n=4/C 1.
b. T .n/ D 2T .n=4/C

p
n.

c. T .n/ D 2T .n=4/C n.
d. T .n/ D 2T .n=4/C n2.

4.6 Proof of the master theorem 97

4.5-2
Professor Caesar wishes to develop a matrix-multiplication algorithm that is
asymptotically faster than Strassen’s algorithm. His algorithm will use the divide-
and-conquer method, dividing each matrix into pieces of size n=4 % n=4, and the
divide and combine steps together will take ‚.n2/ time. He needs to determine
how many subproblems his algorithm has to create in order to beat Strassen’s algo-
rithm. If his algorithm creates a subproblems, then the recurrence for the running
time T .n/ becomes T .n/ D aT .n=4/ C ‚.n2/. What is the largest integer value
of a for which Professor Caesar’s algorithm would be asymptotically faster than
Strassen’s algorithm?
4.5-3
Use the master method to show that the solution to the binary-search recurrence
T .n/ D T .n=2/C‚.1/ is T .n/ D ‚.lg n/. (See Exercise 2.3-5 for a description
of binary search.)
4.5-4
Can the master method be applied to the recurrence T .n/ D 4T .n=2/ C n2 lg n?
Why or why not? Give an asymptotic upper bound for this recurrence.
4.5-5 ?
Consider the regularity condition af .n=b/ # cf .n/ for some constant c < 1,
which is part of case 3 of the master theorem. Give an example of constants a " 1
and b > 1 and a function f .n/ that satisfies all the conditions in case 3 of the
master theorem except the regularity condition.

? 4.6 Proof of the master theorem

This section contains a proof of the master theorem (Theorem 4.1). You do not
need to understand the proof in order to apply the master theorem.

The proof appears in two parts. The first part analyzes the master recur-
rence (4.20), under the simplifying assumption that T .n/ is defined only on ex-
act powers of b > 1, that is, for n D 1; b; b2; : : :. This part gives all the intuition
needed to understand why the master theorem is true. The second part shows how
to extend the analysis to all positive integers n; it applies mathematical technique
to the problem of handling floors and ceilings.

In this section, we shall sometimes abuse our asymptotic notation slightly by
using it to describe the behavior of functions that are defined only over exact
powers of b. Recall that the definitions of asymptotic notations require that

	Contents
	Preface
	I Foundations
	1 The Role of Algorithms in Computing
	2 Getting Started
	3 Growth of Functions
	4 Divide-and-Conquer
	5 Probabilistic Analysis and Randomized Algorithms

	II Sorting and Order Statistics
	6 Heapsort
	7 Quicksort
	8 Sorting in Linear Time
	9 Medians and Order Statistics

	III Data Structures
	10 Elementary Data Structures
	11 Hash Tables
	12 Binary Search Trees
	13 Red-Black Trees
	14 Augmenting Data Structures

	IV Advanced Design and Analysis Techniques
	15 Dynamic Programming
	16 Greedy Algorithms
	17 Amortized Analysis

	V Advanced Data Structures
	18 B-Trees
	19 Fibonacci Heaps
	20 van Emde Boas Trees
	21 Data Structures for Disjoint Sets

	VI Graph Algorithms
	22 Elementary Graph Algorithms
	23 Minimum Spanning Trees
	24 Single-Source Shortest Paths
	25 All-Pairs Shortest Paths
	26 Maximum Flow

	VII Selected Topics
	27 Multithreaded Algorithms
	28 Matrix Operations
	29 Linear Programming
	30 Polynomials and the FFT
	31 Number-Theoretic Algorithms
	32 String Matching
	33 Computational Geometry
	34 NP-Completeness
	35 Approximation Algorithms

	VIII Appendix: Mathematical Background
	A Summations
	B Sets, Etc.
	C Counting and Probability
	D Matrices

	Bibliography
	Index

