Homework 03

Instructions

You may work in groups of up to 4 and submit a single assignment for the group.
For computational problems, please show your work; for conceptual questions,
please explain your reasoning. Solutions may be neatly hand-written and scanned
or typeset. Please submit your solution to Moodle in PDF format.

Due: Friday, April 2, 23:59 AoE

The following exercises refer to the queue implementation, IQueue. For sim-
plicity, assume that the array items is unbounded. You can read about the
compareAndSet method for the AtomicInteger class here.

public class IQueue {
AtomicInteger head = new AtomicInteger(0);
AtomicInteger tail = new AtomicInteger(0);
int[] items = new int[Integer.MAX_VALUE];

public void enq (int x) {
int slot;
do {
slot = tail.get();
} while (!tail.compareAndSet(slot, slot+1));
items[slot] = x;

}

public int deq () throws EmptyException {
int value;
int slot;
do {

slot = head.get();

value = items[slot];

if (value == null)

throw new EmptyException();
} while (!head.compareAndSet(slot, slot+1));
return value;


https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/atomic/AtomicInteger.html#compareAndSet(int,int)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/atomic/AtomicInteger.html#compareAndSet(int,int)

Exercises
Exercise 1. Give an execution demonstrating that IQueue is not linearizable.

Exercise 2. Is IQueue wait-free? Lock-free? Why or why not?



	Instructions
	Exercises

