
Properties :

µ

"""""""
1. Review Heap properties 1 . all nodes at depth I d-2 have

2 children

2. Representing heaps w/ Arrays
2. At most 7 node at depth d- 1 has

.LastTime_ 1 child , and it is a left child

complete binary trees CCBTS) 3. If v at depth d- 1 has children and
u is to the left C@ depth d) , then
U has 2 children

depth 4. If ✓ at depth d- 1 has < 2 Children
=

and W is to the right , then w

has no children

consequent . If T is a complete binary
tree then :

1. There is a unique location that a
leaf can be added to result in
a CBT

v2
.
There is a unique leaf that can be
removed to result in a CBT

Also last time: Heaps

Adding to a heap :
A heap is a CBT in which each

noIstres a comparable element 1. Add element at unique location to
and satisfies : append a new leaf

Heapproierty the value stored at 2.
"

Bubble up
"

:

f) a node is no larger than the values . ✓ C- new node

stored by its children
• While (V 's Val L V 's parent's rat)

- swap values

- set ✓ = v. parent

④
,

Example : add(2)

% zzx

3

④i①④i③ ⑤
'2¥08

Value=3
Removing min from a heap :

I. Store root Val (to be returned)

2- "PY value from
"

last
"

leaf "
5 ⑦root , and set as root value

- right most leaf C depth d

3. Remove leaf ⑨☒☒ 70 ⑤
4.

" trickle down
"

④i①☒¥i③
• v← root

12
• while (v 's val > some child's Val)

- u = smaller child of ✓

- swap u and ✓ 's vats
- update v ← u

Example : removeMint)

REITs: add and removeMin maintain
heap property / CBT and can be performed
with Ocloqn) compare/swap operations

RepresentinqCBTsasArra We can access children / parents directly from
the array :

since CBTS have predictable structure, we
can represent them neatly as arrays :

- left child of index i is 2*0-+1

• root at index 0 - right child of index i is 2*i+2
• left/ right children @ indices 1,2
• grandchildren C 3,415,6 (left to right) - parent of index i is (i- 1) 12

-

☐ LIE. addlb)
swapswap

'④É⑦
☒ 3 4 ⑦ 9 5 78 15 14 11 10 13 12 ☒

6 $7 8
7-④④④ "⑤ Examine : remove Mint)

swap
" 12

0 I 2 3 4 5 6 7 8 9 10 11 12
31 ④ 7 9 ⑦ 8 15 14 11 ☒ 13☒

3 4 7 9 5 8 15 14 11 10 13 12 2 ¥ ☒ 12

Ne×tTime_ : Skiplists t randomized data

3 to structures

return

